
Lambda Calculus as a Workflow Model

Peter M. Kelly, Paul D. Coddington, and Andrew L. Wendelborn

School of Computer Science

University of Adelaide

South Australia 5005, Australia

{pmk,paulc,andrew}@cs.adelaide.edu.au

Abstract

Data-oriented workflows are often used in scientific ap-

plications for executing a set of dependent tasks across mul-

tiple computers. We discuss how these can be modeled us-

ing lambda calculus, and how ideas from functional pro-

gramming are applicable in the design of workflows. Such

an approach avoids the restrictions often found in workflow

languages, permitting the implementation of complex appli-

cation logic and data manipulation.

This paper explains why lambda calculus is an appropri-

ate model for workflow representation, and how a suitably

efficient implementation can provide a wide range of ca-

pabilities to developers. The presented approach also per-

mits high-level workflow features to be implemented at user

level, in terms of a small set of low-level primitives provided

by the language implementation.

1 Introduction

Workflow systems [17] have emerged in recent years as

tools for building distributed applications involving the co-

ordination of software components at different sites. In sci-

entific fields, these are generally based on a data-oriented

model, where a series of side effect free operations are per-

formed on a collection of input data to produce a result.

Each operation is realised as a task that is executed on a re-

mote computer, and invoked by the workflow engine over

the network. Tasks are generally either jobs submitted via

batch queuing systems such as Condor [15] or Globus [8],

or invocations of RPC-style services using protocols such

as SOAP. Examples of workflow systems include DAGMan

[15], Chimera [9], Taverna [6], and Kepler [5].

A model of computation specifies the way in which the

task invocation is carried out at an abstract level. Usually,

this is based on a set of data dependencies between tasks,

so that a given task only executes once all of its inputs are

available, and the outputs are sent to other tasks. These

can be expressed as a directed acyclic graph (DAG), which

can be edited graphically or textually. This model is some-

times extended with additional features for loops, condi-

tional tests, and nested workflows.

Many of these systems are based on models of com-

putation which only support a limited set of programming

constructs. Typically, these models are either not Turing

complete, or do not support fine grained computation. This

means that only very simple programming logic can be im-

plemented in the workflow language, and any complex work

must be carried out by external jobs or services written in

more powerful programming languages. This is a prob-

lem for complex workflows, because it sometimes means

that a developer must switch to a different language to per-

form certain actions, such as data manipulation or interme-

diate computation on the values exchanged between differ-

ent tasks.

This issue can be addressed by using a more flexible

model of computation which is Turing complete and can

be implemented in such a way that both high-level and low-

level programming is equally well supported. It is prefer-

able that such a model maintains the advantages of existing

workflow models, such as explicit data dependencies, lack

of side effects, and a level of abstraction above that of main-

stream imperative programming languages. In this paper,

we discuss the suitability of lambda calculus for expressing

workflows, and how it can meet these requirements.

1.1 Lambda calculus

Lambda calculus [2] is an abstract model of computation

which is the theoretical foundation of functional program-

ming. It specifies a notation in which functions are defined

as lambda abstractions, consisting of a set of arguments and

a body, such as the following:

(λa.λb.λc.b (a c c))

When such a function is applied to arguments, its body

is instantiated by replacing all variable references with the

1



supplied arguments. Evaluation proceeds via a sequence of

reductions, each of which transforms the expression into a

version that is closer to its normal form, or result value:

(λa.λb.λc.b (a c c)) + sqrt 8

=> sqrt (+ 8 8)

=> 4

Although the basic lambda calculus model does not in-

clude any built-in operations or data types, any language

implementation based on the model will provide some set

of primitives. These may be coarse grained, such as oper-

ations to invoke web services with data values representing

XML trees, or fine grained, such as arithmetic operations

and numeric values. The set of primitives is an implemen-

tation choice which is independent of the basic model of

program representation and evaluation.

The most common technique for evaluating lambda cal-

culus is graph reduction [11]. In this model, the program is

represented in memory as a graph, much like a syntax tree

produced by a parser. Evaluation proceeds by traversing the

graph to locate expressions that can be reduced, and replac-

ing the relevant graph nodes with the result obtained from

evaluation of the expression. This graph representation has

similarities with DAG-based workflows, as we shall see in

section 3.

An important property of the lambda calculus is that the

result of evaluation is independent of the order in which the

reductions are performed. This is known as the Church-

Rosser theorem [3], and is what enables separate parts of

the graph to be safely reduced in parallel. In the context of

workflows, this means invoking multiple tasks at the same

time. This relies on the assumption that all tasks are side

effect free, which is typically the case for scientific work-

flows.

1.2 Motivation

There are several advantages to using lambda calculus as

a model for expressing workflows. Firstly, text-based rep-

resentations scale better than graphical views, which can be

an issue for complex workflows. Text editors are easily ca-

pable of handling large files with hundreds of lines of code,

while graphical workflow editors generally do not provide

an interface that deals with such complexity easily. Expres-

sions are also a more compact syntax than separate node

and edge declarations.

Secondly, the use of lambda calculus as a computational

model lends itself to the application of theory developed

in the context of functional programming. Common tasks

such as iteration, tail recursion, and conditional expressions

can easily be expressed with this model, as can data struc-

ture manipulation.

Finally, we can apply implementation techniques from

Figure 1. Task dependency DAG

the functional programming community to execute work-

flows more efficiently by compiling them into executable

code, which is particularly important for complex work-

flows including data transformation and application logic.

2 Graph types

Task dependency graphs, sometimes referred to as di-

rected acyclic graphs (DAGs), contain nodes specifying

tasks, and edges representing data dependencies. The tasks

are executed in such an order that if task A depends on task

B, then B will be executed first, with its output data being

transferred to A. Each task can be viewed as a “function”

taking a set of input values and producing an output value.

In implementation terms, function evaluation corresponds

to invoking a computation on a remote resource. This model

is typically referred to as dataflow.

Figure 1 shows an example workflow. Task A depends

on B and C, which both depend on D. Thus the execution

order will be D first, then B and C (either sequentially or

concurrently), and finally A. The “result” of the workflow

will be the output data generated by A.

An alternative model is a graph of application nodes. In

this model, a task (or equivalently, function call) is modeled

as a sequence of application nodes, one per input. The last

link in the chain is a reference to a function (which may be

executed remotely), and each of the input parameters are

also graphs. Figure 2 shows the above workflow in this

model, with application nodes represented by the character

@.

The key differences with this model are that nodes can

correspond to data values, and functions are treated as val-

ues. Functions can thus be passed around as parameters and

returned as results from so-called higher order functions.

This property enables a wide range of useful techniques that

are common in functional programming, and is also useful

for modeling abstract workflows, as described in Section

4.7.

2



Figure 2. Function application graph

3 Workflow representation

There are several common ways of representing the in-

formation that specifies a workflow structure. One that is

common in many workflow systems is a graphical represen-

tation, in which task nodes are represented as shapes, with

lines and arrows indicating dependencies between them.

This representation is aimed at end users who utilise a

graphical editor to construct their workflow. Figure 1 is a

typical example of this representation.

Even if a graphical editor is used, a text-based format

is also present for storing the file on disk. An obvious se-

rialisation of the graphical view is to represent the graph

by a series of statements defining the set of nodes, along

with another set defining the edges. The statements may be

represented either as XML elements, or using some other

syntax. An example of the graph from Figure 1 represented

in this way is the following:

node A

node B

node C

node D

edge B -> A

edge C -> A

edge D -> B

edge D -> C

An alternative way of representing a graph is as an ex-

pression, in which each node is specified by writing its

name, followed by a list of parenthesised sub-graphs that

point to it. In fact, this corresponds exactly to the syntax

used by the lambda calculus. The same graph expressed in

this manner would be as follows:

A (B D) (C D)

Figure 3. Graph requiring a let expression

This representation is more concise, and closer to the

way in which programmers normally write expressions.

However, it does not properly handle tasks whose output

is sent to more than one destination, as is the case with D.

The syntax is still acceptable in this example, since D takes

no inputs. However, tasks which do take inputs, such as H

in Figure 3, need a better solution. This problem can be

solved using a lambda abstraction, by binding a symbol to

the sub-graph, and referencing it where necessary:

(λx.E (F x) (G x)) (H I J)

It is straightforward to extend the syntax of lambda cal-

culus with let expressions, which can be transformed at

parse time into the above format, e.g:

let x = (H I J) in (E (F x) (G x))

Each of these graphical and textual formats is capable

of representing the same information, and transformation

from one to another is straightforward. A workflow engine

that uses lambda calculus as its input language can execute

workflows that have been exported from graphical editors,

or translated from other DAG-based workflow languages.

Converting these workflows into lambda calculus does

not alter their high-level nature. We have still described

nothing about what each of the tasks actually does, how the

workflow engine causes them to be invoked, or the way in

which data is passed between them. These are still details

which we consider to be abstracted away; the only differ-

ence is the notation in which we have expressed the work-

flows. In Section 4, we will discuss how these functions

may be implemented in concrete terms.

4 Modeling workflow features

A model of computation specifies the abstract nature of

tasks and how they are used together during execution, but

does not specify how those tasks are actually implemented.

Any workflow system must provide facilities for invoking a

3



task on a remote machine. In most cases, this invocation is

provided as a primitive within the workflow language, and

implemented explicitly within the execution engine. This

is unavoidable for workflow languages that are not Turing

complete, because the low-level interaction with the remote

host often requires language facilities that are only present

in more powerful languages.

Because lambda calculus is capable of expressing arbi-

trarily complex computations, an efficient implementation

that provides a few basic data types and low-level opera-

tions can enable task invocation to be implemented in terms

of the workflow language itself. Instead of coarse grained

primitives for launching tasks, fine grained primitives for

low-level operations like establishing TCP connections and

writing binary data may be used to build up higher level ab-

stractions for task invocation. This approach is analogous

to a micro kernel based operating system, in which all high-

level functionality is implemented at user level on top of

basic primitives provided by the runtime environment ex-

posed by the kernel.

The workflows discussed in the previous section rep-

resented each task as a function application, such as (B

D), which is a call to the task B, supplying the output of

D. These functions were not defined, but assumed to be

mapped by the workflow engine into remote tasks. This

mapping can be achieved by making each function a built-

in primitive, or defining those functions in the workflow

language as expressions which call lower level networking

primitives to invoke the remote computation. In this section,

we describe how this latter approach can be used to provide

much of the functionality that is normally implemented as

primitives by existing workflow engines.

4.1 Primitives

In order to implement high-level workflow functionality

in terms of low-level operations, it is necessary for the lan-

guage implementation to provide a small number of basic

primitives. These should include capabilities for manipulat-

ing data at the byte level, performing arithmetic operations,

and manipulating data structures. Table 1 lists a possible set

of operations. The built-in data types should include at least

numeric values, cons pairs, and nil values.

While the basic lambda calculus can theoretically be

used to express any computation, primitives like these are

necessary in order to achieve reasonable performance. Ad-

ditionally, many optimisations can be made within the lan-

guage implementation to gain efficiency, such as storing

cons lists internally as arrays, and compiling expressions

into executable code. As we are interested primarily in the

computational model, we will not go into further details of

these optimisations here.

Many abstractions can be built up from these primitives

+, -, *, /, % Arithmetic functions

==, !=, <, <=, >, >= Numeric comparison

and, or, not, if Logical & conditional

cons, head, tail List operations

connect Network connections

Table 1. Primitive operations

that can be used to support high-level workflow functional-

ity. Cons lists can be used to support a wide range of data

structures, such as strings (lists of character codes), binary

data (lists of byte values), and XML trees (lists of element

objects containing strings and other elements). Conditionals

are supported by the if function; iteration can be achieved

using tail recursion, and map, filter, and reduction opera-

tions can be defined in terms of the built-in list operations.

These techniques are well known in the functional program-

ming literature.

The connect primitive deserves special attention. We

define it as a built-in function taking three parameters: host,

port, and output stream. The first two are used when estab-

lishing a connection, while the third is a cons list supplied

by the program, which the runtime system writes out to the

connection. The result of a call to the connect function

is itself a cons list, which can be read from lazily to obtain

data from the connection. It can be treated as a string by in-

terpreting each value in the list as a character code, which is

useful for implementing text-based protocols such as HTTP.

4.2 Job submission

A batch queuing system accepts a request from a client

specifying details of a job to run, and then notifies the client

once the job has completed. The way in which the net-

work interaction occurs depends on the protocol used by

job submission mechanism. In some cases, separate net-

work connections may be used to submit the request and

then later retrieve the result; in others, a single connection

may be kept open until the job completes, and the results

sent back directly. The logic to handle this interaction may

be implemented as a set of support routines provided by the

workflow system, using lambda calculus combined with the

primitives given above.

As a simple example, consider a job queue that accepts

submissions via HTTP GET requests, and sends the job

output directly back to the client in the HTTP response.

A script on the web server named runjob.pl accepts a

program parameter specifying the name of the executable

file, and an args parameter containing the command line

arguments to be passed to the program. The code in Figure

4 invokes this script by sending it a request with the query

string formed based on supplied program name and argu-

ment list. This code assumes separately defined routines

4



submit_job = (λhost.λprog.λargs.

(parse_response

(connect host 80

(++ "GET /runjob.pl?program="

(++ (urlencode prog)

(++ "&args="

(++ (urlencode (join " " args))

" HTTP/1.0\r\n\r\n")))))))

Figure 4. Support routine for job submission

are available for string concatenation, list joins, parameter

encoding, and HTTP response parsing. It also assumes that

the parser converts strings into cons lists of characters.

Individual tasks can be be implemented as functions

which call this routine, supplying concrete details about the

job to be executed. For example, a task A that takes two

string arguments could be defined as follows:

A = (λx.λy.submit_job "hydra"

"/home/pmk/myprog" (cons x (cons y

nil)))

This task may then be called from a workflow, in this

case taking as input the results of tasks B and C:

A (B D) (C D)

Implementing tasks in such a manner preserves our abil-

ity to deal with them at a high level. The workflow specifi-

cation remains the same as the example given in Section 3;

here we have gone into one more level of detail to specify

how it is realised in actual terms. The concrete implementa-

tions may be arbitrarily complex, involving all of the neces-

sary mechanisms to invoke a job, including support actions

such as staging data in or out of the remote host, and moni-

toring for task completion.

4.3 Services

Services can be accessed in a similar manner to the

above. RPC mechanisms are generally implemented by

having the client establish a connection to the server, send

it a request containing the operation name and input param-

eters, and then having the server send back the result. For

example, web services utilise the HTTP request/response

mechanism and encode the parameters and results using

XML and SOAP.

A workflow task corresponding to a web service invoca-

tion can be defined as a function which makes calls to sup-

port routines that submit a SOAP request to a web server.

Depending on how the workflow system is implemented,

the values passed between tasks could be represented as

plain strings, or more complex data structures such as XML

trees. It is the responsibility of the support routines to con-

postreq = (λhost.λpath.λreq.

(connect host 80

(++ "POST "

(++ path

(++ " HTTP/1.0\r\n"

(++ "Content-Type: text/xml\r\n"

(++ "Content-Length: "

(++ (numtostring (len req))

(++ "\r\n\r\n" req)))))))))

soapcall = (λhost.λpath.λbody.

(parse_response

(postreq host path

(++ "<Envelope><Body>"

(++ body

"</Body></Envelope>")))))

Figure 5. Support routines for web services

vert between these representations and the on-the-wire for-

mat.

As an example, the code in Figure 5 implements a sim-

plified version of SOAP over HTTP. The postreq func-

tion accepts a host and URL path, as well as a request body.

It makes a HTTP POST request containing the appropri-

ate headers. The soapcall function accepts the host and

path, as well as the arguments to be passed to the service,

which are assumed to be already encoded in XML. It wraps

these in a SOAP envelope and posts the request to the server.

The response is then parsed to extract the result value.

Consider a workflow task B that calls a stock

quote service. It takes a single parameter specify-

ing the symbol name, and submits a SOAP request to

http://stockexchange/getquote using the above routines:

B = (λsym.soapcall "stockexchange"

"/getquote" (++ "<symbol>" (++ sym

"</symbol>")))

4.4 Shims

A common problem encountered when developing

workflows is that tasks sometimes use different input and

output formats. These formats may contain the same infor-

mation but with a different syntax, or similar information

that requires both syntactic and semantic transformations to

achieve compatibility. When such conversion is needed, ad-

ditional components must be added to the workflow to per-

form the necessary conversion. These are known as shims

or adapters [7, 10].

The need for shims is due to the lack of support in many

workflow languages for data manipulation. Instead of be-

ing able to access fields of an object or perform basic string

5



manipulation using built-in language constructs or APIs, a

developer must create separate components or services to

perform these tasks. Features like these, which are com-

mon in regular programming languages, involve significant

effort and complexity in workflow languages. While this

cost is sometimes worth paying in order to get the bene-

fits provided by workflow languages, there are many cases

where the tradeoff is questionable.

Of course, these problems could be avoided by writing

the workflow entirely in a language like Java or C, but this

would involve giving up other benefits like automatic par-

allelisation and fault tolerance that are generally provided

by workflow languages. Instead, it is preferable to use a

language which meets both types of requirements. Lambda

calculus, combined with basic primitives such as those sug-

gested in Section 4.1, meets this criterion.

4.5 Data parallelism

Workflows can often benefit from data parallelism,

where each item in a list of values is processed separately,

potentially on different computers. This sort of process-

ing is common in task farming middleware, but is not well

supported by DAG-based workflow languages. The reason

is that the latter typically assume a fixed number of tasks,

thus requiring sequential iteration to process lists [14]. A

solution is to use the map construct common in functional

programming languages, which can easily be expressed in

lambda calculus using the cons, head, and tail primi-

tives:

map = (λf.λlst.

if lst

(cons (f (head lst))

(map f (tail lst)))

nil)

Such a call can be automatically parallelised by the run-

time system in the case of strict evaluation, but may re-

quire explicit annotations [16] in the case of lazy evalua-

tion. Other operations like filter and reduce can be

implemented in a manner similar to the above.

4.6 Control structures

Some workflow engines provide limited ability to control

the flow of execution based on data computed during the

workflow. These constructs are standard features present

in all major programming languages, and their implemen-

tation in functional programming languages is well known.

For example, conditionals are implemented using the if

function, which takes a boolean expression as well as true

and false branches. When evaluated, it evaluates the condi-

tional parameter and returns either the second or third argu-

ment, depending on the result.

Sub-workflows can be modeled as functions. Wherever

they are used, each input link corresponds to an actual pa-

rameter, and the output link is the result of the function call.

Multiple outputs can be handled by wrapping them in lists.

Iteration can be modeled using tail recursion, which can be

performed in constant space by most functional language

implementations. Each iteration is simply another call to

the same function but with updated values passed as param-

eters. A portion of the workflow that needs to be executed

multiple times for different inputs would be expressed as an

application of the map function to a lambda abstraction, as

described in Section 4.5.

4.7 Abstract workflows

Some workflow engines support the concept of abstract

workflows, which are workflow specifications that do not

explicitly specify which resources are to be used. Concrete

workflows are constructed by instantiating an abstract work-

flow with a specific set of resources. In lambda calculus, ab-

stract workflows can be modeled as higher order functions

which take parameters specifying the concrete implementa-

tions of tasks. For example, the workflow from Section 3

can be parameterised as follows:

(λA.λB.λC.λD.A (B D) (C D))

This function can then be applied to a set of function

parameters which implement tasks A-D. If none of the pa-

rameters contain any free variables, it is a concrete work-

flow which can be directly executed. Otherwise, it is a “less

abstract” workflow that contains some implementation de-

tails but is still parameterised. For example, the following

abstract workflow specifies each task as a web service call

to a specific operation, but is parameterised by the service

URLs:

AWF =

(λurl1.λurl2.λurl3.λurl4.

(λA.λB.λC.λD.A (B D) (C D))

(λx.y.wscall url1 "a" ...)

(λx.wscall url2 "b" ...)

(λx.wscall url3 "c" ...)

(wscall url4 "d" ...))

This abstract specification can then be instantiated into a

concrete workflow by applying the function to a set of pa-

rameters specifying a specific set of services to be accessed:

(AWF "http://a.org/analyse"

"http://b.org/filter"

"http://c.org/process"

"http://d.org/query")

One application of the abstract workflow concept is to

provide quality of service (QoS) mechanisms, whereby ser-

vices are chosen at runtime based on certain requirements.

6



For example, a user of the above workflow may want to

specify that they want to use the cheapest service available

that implements A, the fastest available versions of services

B and C, and the most reliable version of service D. Assum-

ing the workflow engine provides functions to determine the

best choice in each case, this could be expressed as follows:

(AWF (find_cheapest "a")

(find_fastest "b")

(find_fastest "c")

(find_most_reliable "d"))

Abstract workflows defined using these techniques are a

flexible way of achieving reuse. A scientist may develop

a workflow parameterised by service addresses, and then

run it in their local environment by supplying the necessary

set of URLs. The abstract workflow could subsequently be

shared with other scientists, who may run it with the local

versions of those services hosted at their own institution, or

with a different set of input data. Such usage is equivalent

to a script which uses a configuration file or command-line

parameters, rather than using hard-coded information.

The ability to express abstract workflows in this man-

ner does not require explicit support from the workflow en-

gine. It comes about as a natural consequence of the in-

herent support for higher order functions that is present in

lambda calculus. It is one of the many examples of how

powerful functionality can be built up from a minimal set

of language constructs, instead of extending a monolithic

infrastructure.

5 Implementation

Although the lambda calculus model is suitable for rep-

resenting workflows, additional requirements must be met

for these representations to be executed in a manner that

achieves the advantages typically associated with workflow

engines. This combination of representation and execution

requirements together defines the semantics and pragmatics

of the computational environment in which workflows are

executed. Such an implementation effectively constitutes

an implementation of a functional programming language.

Parallel evaluation of multiple sub-expressions must be

provided in order for more than one task to be in progress at

the same time. Techniques such as parallel graph reduction

[1] may be used to achieve this, based either on strict or lazy

evaluation. In the latter case, strictness analysis [4] and/or

manual annotations [16] can be used to indicate which ex-

pressions may be safely reduced in parallel.

Network connections should be supported in such a man-

ner that they can be mapped onto data streams, and prefer-

ably exposed using a cons list abstraction. This enables the

data sent to or received from a service to be treated as data,

and for all of the programming techniques that are appli-

cable to list processing to be used in the context of data

streams. This is particularly useful when combined with

lazy evaluation, because it enables results from tasks to be

processed incrementally.

Ideally, some measure of fault tolerance should be pro-

vided, so that if a remote job or service fails, then it can be

retried on another host. The side effect free nature of the

lambda calculus model means that it is safe to re-execute a

task, even if it was already part way through execution at

the time that it failed. This property is relied on by many

distributed computing systems to provide correctness even

in the face of partial failures.

Finally, the execution engine should be efficient enough

to support fine grained computation. This is important due

to the fact that low-level primitives are used by remote task

invocation mechanisms, and also to support data manip-

ulation and intermediate computation on the data values

produced and consumed by external tasks. Techniques for

implementing functional languages efficiently are given in

[11].

In [13], we presented an example of a workflow engine

that implements many of these ideas. It supports paral-

lelism, native code compilation, and an array-based cons list

representation for efficient stream processing. We have also

implemented an XSLT compiler designed for web service-

based workflows [12], using the lambda calculus as an in-

termediate target. Our current research explores the appli-

cation of these ideas. In many ways, the ideas put forward

in this paper are a reduction of our experiences developing

and applying the system reported in [12] and [13].

The issues addressed in this paper are solely related to

the modeling and execution of workflows. The development

of visual programming environments and higher level work-

flow languages are separate concerns that can be addressed

within the overall framework we have presented here. Edi-

tors or compilers which output lambda calculus can utilise

an execution engine meeting the above requirements, while

exposing a different (but compatible) interface or syntax to

developers.

6 Conclusion

Lambda calculus is a simple, abstract model of compu-

tation. It is independent of the granularity of operations,

and can thus be applied to coarse grained workflows as well

as fine grained computation. The side effect free nature of

the model and incorporation of explicit data dependencies

enables techniques such as parallel graph reduction to be

used to coordinate the concurrent invocation of operations.

When applied to workflows, this enables multiple remote

operations to be in progress at the same time.

7



Previous research on functional programming has pro-

duced techniques for efficiently executing languages based

on the lambda calculus model. These techniques can be

used to build workflow enactment engines in such a way

that supports features necessary for workflows, such as par-

allelism, but also permits arbitrarily complex, fine grained

computation to be performed within the workflow language

itself. This fine grained computation can be used to im-

plement support functionality such as network protocols for

launching remote tasks, and transforming data between the

representations used by different tasks.

The lambda calculus model provides a solid founda-

tion for functional programming and, by extension, data-

oriented workflows. We have shown how common work-

flow constructs can be expressed in terms of lambda calcu-

lus, both at an abstract level and with regards to concrete

implementation details. This approach to designing work-

flow engines achieves power through simplicity, and per-

mits the requirements of concurrency and distribution to be

met without sacrificing expressiveness.

References

[1] Lennart Augustsson and Thomas Johnsson. Parallel

graph reduction with the (v , g)-machine. In FPCA

’89: Proceedings of the fourth international confer-

ence on Functional programming languages and com-

puter architecture, pages 202–213, New York, NY,

USA, 1989. ACM Press.

[2] Alonzo Church. A set of postulates for the founda-

tion of logic. The Annals of Mathematics, 2nd Ser.,

33(2):346–366, April 1932.

[3] Alonzo Church and J. Barkley Rosser. Some prop-

erties of conversion. Transactions of the American

Mathematical Society, 39(3):472–482, May 1936.

[4] Chris Clack and Simon L. Peyton-Jones. Strictness

analysis – a practical approach. In J. P. Jouannaud,

editor, Conference on Functional Programming and

Computer Architecture, number 201 in Lecture Notes

in Computer Science, pages 35–39, Berlin, 1985.

Springer-Verlag.

[5] Bertram Ludascher et al. Scientific workflow manage-

ment and the Kepler system. Concurrency and Com-

putation: Practice & Experience, 18(10):1039–1065,

2006.

[6] Tom Oinn et al. Taverna: Lessons in creating a

workflow environment for the life sciences. Con-

currency and Computation: Practice and Experience,

18(10):1067–1100, August 2006. Special Issue on

Grid Workflow.

[7] U Radetzki et al. Adapters, shims, and glue–service

interoperability for in silico experiments. Bioinfor-

matics, 22(9):1137–43, May 2006.

[8] Ian Foster and Carl Kesselman. Globus: A metacom-

puting infrastructure toolkit. The International Jour-

nal of Supercomputer Applications and High Perfor-

mance Computing, 11(2):115–128, Summer 1997.

[9] Ian Foster, Jens Vockler, Michael Wilde, and Yong

Zhao. Chimera: A virtual data system for represent-

ing, querying, and automating data derivation. In 14th

International Conference on Scientific and Statistical

Database Management (SSDBM’02), 2002.

[10] Duncan Hull, Robert Stevens, Phillip Lord, Chris

Wroe, and Carole Goble. Treating shimantic web syn-

drome with ontologies. In First Advanced Knowl-

edge Technologies workshop on Semantic Web Ser-

vices (AKT-SWS04). KMi, The Open University, Mil-

ton Keynes, UK, 2004. (See Workshop proceedings

CEUR-WS.org (ISSN:16130073) Volume 122 - AKT-

SWS04).

[11] Simon L. Peyton Jones. The Implementation of Func-

tional Programming Languages. Prentice Hall, 1987.

[12] Peter M. Kelly, Paul D. Coddington, and Andrew L.

Wendelborn. Distributed, parallel web service orches-

tration using XSLT. In 1st IEEE International Confer-

ence on e-Science and Grid Computing, Melbourne,

Australia, December 2005.

[13] Peter M. Kelly, Paul D. Coddington, and Andrew L.

Wendelborn. A distributed virtual machine for paral-

lel graph reduction. In 8th International Conference

on Parallel and Distributed Computing Applications

and Technologies (PDCAT ’07), Adelaide, Australia,

December 2007.

[14] B. Ludäscher and I. Altintas. On providing declara-

tive design and programming constructs for scientific

workflows based on process networks. Technical Note

SciDAC-SPA-TN-2003-01, 2003.

[15] Douglas Thain, Todd Tannenbaum, and Miron Livny.

Distributed computing in practice: The Condor expe-

rience. Concurrency and Computation: Practice and

Experience, 2004.

[16] P. W. Trinder, K. Hammond, H.-W. Loidl, and

S. L. Peyton Jones. Algorithm + strategy = paral-

lelism. J. Funct. Program., 8(1):23–60, 1998.

[17] Jia Yu and Rajkumar Buyya. A taxonomy of workflow

management systems for grid computing. Journal of

Grid Computing, 3(3–4):171–200, September 2005.

8


