
Research Proposal:
A Unified Approach to Scheduling in Grid Environments

7th October 2004

Peter Kelly, B.Info.Tech., B.Comp.Sci (Hons)

School of Computer Science

The University of Adelaide,

South Australia

Supervisors: Dr. Paul Coddington and Dr. Andrew Wendelborn

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

1



Abstract

Grid computing systems provide mechanisms to utilise a wide range of heterogeneous, distributed resources for
compute- and data-intensive applications. In order to obtain good performance, it is necessary to select resources
for use in such a manner that minimises the computation and communication time. The process of scheduling, or
deciding which resources to use, has been explored for many different types of grids and applications. Three types
of scheduling are used:computation scheduling, involving selecting hosts to execute a program,data scheduling,
determining the placement of data for efficient access, andservice scheduling, the selection of a remote host on
which to access a particular service. Existing schedulers generally focus on only one of these types, and do not
consider the interaction between them. We propose a model for scheduling grid applications based on the problem
of assigning theschedulable entitiesof a grid application to resources. These entities represent the computation, data
and service components of an application. Information about these entities and the relationships between them will
be taken into account when making placement decisions. Examples of such relationships include the communication
between tasks, and data dependencies between tasks and files. Our investigation will include the implementation of
this model in several different grid middleware systems.
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1 Introduction

1.1 Grid Computing

The termgrid computingrefers to ways in which distributed, heterogeneous sets of computing resources can be
organised together to provide facilities in such a coordinated, consistent manner. A grid may consist of resources
owned by a number of different organisations, within which sharing arrangements have been established. Users can
access resources on the grid to perform various tasks related to their work, thus gaining access to additional storage,
processing power and other facilities that would not otherwise be available to them.

Many different types of grid computing systems have been developed over the years. These vary widely in the
specific platforms and standards they use, as well as in their architecture and targeted usage scenarios. There are even
a range of definitions of what exactly constitutes a grid; different projects and organisations work off different inter-
pretations of the term. However, the general overall concept is fairly similar in all of these cases - that of harnessing
together a range of different resources for usage by applications.

There are other areas which are related in some respects to grid computing, but differ from it.Cluster computing
[20] refers to parallel computers built from a set of machines of the same type, residing in the same location and
under the control of a central authority.Distributed computing[73] is a very general term relating to a range of
different technologies, from remote procedure call (RPC) mechanisms to distributed object systems and others where
computation occurs across a number of different machines.Client-server computing[62] is an architecture consisting
of a single server providing computational and storage resources which is accessed by multiple clients.

The concept of Grid computing, while not always known by that name, has a long history dating back to the
earliest days of the Internet, predating even TCP/IP itself. A 1970 experiment demonstrated the coordinated use of
PDP-10s and PDP-1s located at Harvard and MIT to run an aircraft carrier simulation program distributed across three
geographically separated nodes [103]. One of the first programs to utilise unused cycles of a series of workstations
was calledCreeper, a worm which replicated itself from machine to machine via ARPANET [55]. Early work on
load balancing algorithms for running applications across distributed systems [74] lead to the creation of the Condor
project [115] in the early 1980’s, one of the first such systems capable of scheduling and assigning jobs to a series
of workstations. Many of the concepts prevalent in the field of grid computing, including services, remote process
invocation, metascheduling, resource management, naming, distributed parallel programs, networks of workstations,
and load balancing were already well established by the mid 80’s [110], and have been implemented in a wide range of
commercial, open source, and research systems over the past twenty years. These are forming the basis of much of the
grid architecture being built today; the widely distributed, heterogeneous nature of grids however introduces additional
implementation challenges, and this past work is being built upon to create additional functionality and systems that
will scale to the demands of today’s grids.

Many grids have been developed over the years, supporting a wide range of platforms, application types, and usage
models. In recent years, efforts have been made to standardise grid technologies to enable increased interoperability,
with the creation of the Global Grid Forum [23]. This group of researchers and organisations has made significant
progress in capturing “best practices” from a range of different projects and is in the process of defining standards
which, once widely implemented across the majority of mainstream grid software, will lead toward easier creation of
large scale grids and sharing of resources between parties. Some of the outcomes of these efforts include the Globus
Toolkit [45] and the OGSA (Open Grid Services Architecture) [47]. While significant progress has been made, much
work still remains to be done before the vision of a world-wide grid capable of efficiently and securely supporting all
types of applications and user needs is realised.

One significant area which needs further work toward this is that of making the most efficient use of the resources
that are available. While large numbers of powerful computers are available and capable of being connected to a
grid, the problem of assigning data and computation to them in such a way to optimise performance is a challenging
one. This is particularly true for applications that require the use of multiple resources, such as parallel programs or
those that access data or services on other computers that are not available locally. Many grid systems now include a
metascheduler, which selects resources for use on an automated basis, using information about the applications and
properties of the resources that are available. While these have made it easier for users to run their applications in a
grid environment, much work still remains to be done before these provide seamless and efficient ways of utilising
resources by freeing the user from the underlying details of the grid. This project aims to make some progress in this
direction, and provide insights on to how this process can be made more effective for certain classes of applications
and grids.
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1.2 Project Overview

The research proposed for this project aims to develop an architecture and algorithms for scheduling different compo-
nents of an application in order to optimise performance in a grid environment. The three types of components covered
are computation, data, and services, and are described further in Section 2. Due to the significant differences in the
ways each of these component types is supported in different programming systems, our research will focus primarily
on the generic aspects of the problem, and also demonstrate its implementation in several different systems. Our in-
tention is to implement the scheduling algorithms in such a manner that the implementation will support a number of
different types of grid software.

The core ideas relating to our model have grown from an analysis of existing technologies for grid and parallel
computing, which are further elaborated on in this proposal. Much work has been done in the field to date, providing a
solid base on which to pursue our research. We will be making extensive use of ideas and technologies that have been
developed previously, in order to leverage them for use in our work, and to ensure that the approaches and algorithms
developed or investigated within the context of this project have utility for widely deployed systems, both now and in
the future.

The main novel idea behind our work is that we consider the interaction between different components of an
application when making scheduling decisions. Examples of these interactions include the degree of communication
between tasks, and the data access patterns of an application. Previous work in the field has mainly concentrated
on scheduling each task or other type of entity separately without consideration for how it interacts with the rest of
an application, or just scheduling computation by itself without regards for the communication costs associated with
placement decisions. We propose a unified approach which considers all of these things together, to provide a more
rounded approach to achieving optimal performance.

Our investigation will begin by looking at a particular grid programming environment that already supports many of
the features that are needed for research into scheduling strategies. The software used will be PAGIS [124], a system
based on process networks which integrates with Globus to support execution of programs in a grid environment.
Currently the mechanisms used for scheduling computation in this system are very simplistic, and we will begin
by implementing more advanced scheduling strategies. We will also add support for data access and grid service
integration, extending the scheduling support to include these aspects of programs as well.

Once the concepts have been implemented in PAGIS and the issues surrounding scheduling of grid applications are
more deeply understood at a practical level, we will we will extend our research to other existing programming systems
that are in use on various grids. An area of particular interest is the emerging OGSA model, and other standardisation
work being done by the Global Grid Forum, although other systems will be looked at as well. The implementation of
our ideas into existing systems will serve to demonstrate the widespread applicability of our approach, and to show
how the theoretical aspects of our research are directly relevant to real-world problems.
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2 Background

A large amount of work has been done in the field of distributed high performance computing over the past three
decades. This has been in a number of areas, ranging from high-end super computers, to clusters, client-server systems,
parallel programming systems and others. Recently, the term “grid computing” has become popular to describe some
of ways in which these technologies have been combined to provide easier ways to make use of computing resources
spread across the world. This section gives an overview of a number of important parts of the field, and describes
some of the past work that the research proposed in Section 3 will build upon.

2.1 Types of Grids

The termgrid computinghas been used to describe many things, and before embarking on a discussion of the field, it
is important to define what is actually meant by this term. In this proposal, it is used to refer a large, geographically
distributed collection of heterogeneous computers residing in different administrative domains, cooperating with each
other through middleware software to enable usage of the collection of machines in an easier manner. This is a very
general description, and can apply to many types of configurations. To further clarify this, and to apply it to the major
areas of the field, we draw a distinction between what we termheavyweightgrids andlightweightgrids.

Heavyweight grids are built out of big, expensive supercomputers or clusters owned by academic or research
institutions and large corporations. Each of these computers are generally bought by the organisation for the pur-
poses of running computationally demanding software used for discipline-specific purposes in science, engineering,
or business. The machines contain specialised mechanisms for submitting and monitoring jobs, and often dedicate
processors to processes, rather than multitasking jobs on a processor. Administering such machines is a non-trivial
task, and requires expertise in understanding many details of how the system operates, and the skills to carry out
complex software installation and configuration procedures. Full-time staff are often hired specifically to administer
these machines. Such systems are made available to a grid by their owners according to sharing arrangements with
other institutions, such as members of an international research collaboration or industrial consortium, often termed
a virtual organisation. Because of the large investment of money, time, and personnel into these systems, owners
understandably want a say in how they are used by other members of the grid, and thus define specific policies which
state who has access to the resources, how and when they are used, and other criteria.

Lightweight grids consist primarily of desktop machines sitting on users’ desks, often termed anetwork of work-
stations[6]. These may reside solely within the one organisation, span across multiple organisations, or consist of an
Internet-wide collection of computers both in people’s homes and offices. These grids are designed around the concept
of cycle-stealing, that is, making use of idle processors in these workstations when they are not being used for their
normal purposes. The policies imposed on each individual host are generally much simpler than those of high-end
supercomputers - often they simply state that the computer can be used for any processing desired by the grid, as long
as it doesn’t run while the user is at the machine. In many cases, users neither know or care what the grid software is
doing while they are away from their machines, as long as the processing is done securely and their data is not at risk.
Due to the lack of system administration skills possessed by most people, ease of installation is a critical factor in the
success of any grid solution targeted to an Internet-scale deployment of such systems.

The way in which jobs are launched differs significantly between supercomputers and workstations. A supercom-
puter contains a local job submission system which places jobs in a queue and then executes them when it deems
appropriate. While a job may start executing immediately, it could potentially be postponed to some point in the fu-
ture, if it needs exclusive access to processors and the required number of processors is busy running other jobs. The
scheduling strategies used by supercomputers are discussed further in Section 2.5.1. On the other hand, grid systems
designed for cycle stealing on workstations typically do not maintain local queues on each machine, so while a job
may still need to wait in the global scheduler’s queue, once it has been dispatched to a machine it is guaranteed to
start without additional delays. When running a parallel application on a lightweight grid, it is therefore not usually
necessary to take into account the differences between local job scheduling strategies between hosts.

The distinction between heavyweight and lightweight grids, and the software designed for them, is not always clear.
Most systems designed for networks of workstations can also be deployed in a cluster environment, and middleware
aimed at connecting supercomputers together can, at least theoretically, support large collections of workstations.
However, traditional cycle-stealing systems often ignore the autonomy and complex local job scheduling policies
often present on supercomputers, and software designed for heavyweight grids is not always as easy to deploy as
systems designed for desktop usage.
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An example of a heavyweight grid is the systems targeted by the Globus toolkit. A system administrator installs
Globus on a parallel computer or cluster, and configures it according to their needs. They must set up the job manager
to work with their local scheduler, and register the host with the directory service, which often runs on a separate
machine. For security purposes, a host certificate, which uniquely identifies the machine and enables clients to connect
to it, must be obtained from some central authority. Additionally, a “gridmap” file must be created which specifies a
mapping of user certificates to entries in the local user database. This configuration is very machine-specific and allows
for a high degree of control over how the machine integrates with the grid and who is allowed to use it. However, the
complex installation process is generally inappropriate for mass deployment on individual workstations, because of
the amount of work involved and the level of expertise it requires [29].

Numerous systems designed for lightweight grids have been developed in recent years. Entropia [28] enables
the use of windows-based desktop machines in an organisation for running grid applications submitted to a central
job manager. It provides a security mechanism to protect the local machine from accidental or malicious damage
by grid applications using a sand-boxing technique involving the modification of native win32 binaries to prevent
grid applications from performing unauthorised operations or accessing user data. It also contains mechanisms to
ensure the integrity of the application and its associated data files. The POPCORN [80] and SPAWN [121] projects
allow workstations to participate in parallel computations and use an economic market system for trading CPU time.
ParaWeb [19] and XtremWeb [51] are similar systems capable of executing parallel Java programs across a number
of nodes, and Alchemi [76] provides essentially the same functionality using the .NET framework. A number of
application-specific grids have been built in which large numbers of users, sometimes in the millions, install client
software designed to solve a particular problem. Prominent examples include the SETI@Home project [66], which
utilises the idle cycles of users’ machines to search astronomical data for signs radio signals indicating the existence
extraterrestrial intelligence, distributed.net’s efforts to crack the RC5 encryption algorithm [43], and Folding@home
[68], which utilises client machines to simulate protein folding experiments used for medical research. Condor [115]
provides a mechanism for accepting job requests from clients and assigning them to machines based on a load bal-
ancing strategy. These machines can be running any platform that supports the Condor software, and are selected for
job execution based on their operating system, and other parameters that are specified by the user. Job requests are
matched to machines using a mechanism called ClassAds. Numerous execution environments are supported, including
native binaries, Java programs, and parallel programs written for the MPI and PVM libraries. Condor is suited to both
heavyweight and lightweight grids.

These are not the only two types of grids in existence, but rather a simplification of the two most common categories
that are used for running traditional grid applications. Another type of grid is the emergingservices model, in which
specific functionality is provided through well-defined interfaces and accessed through standard protocols. Services
can be provided by any type of machine, ranging from supercomputers and high-end servers down to individual
workstations and handhelds. Because access occurs through standard protocols, clients require no knowledge of the
platform that the server is running. Service-based grids such as these are common in enterprise environments, where
they are used to integrate a variety of databases, legacy systems, and other business applications in a standard manner.
A good example of this type of usage is Oracle’s BPEL Process Manager [85], which allows users to graphically
construct a work flow used to integrate services in a coordinated manner. Similar projects, such as Taverna [83], are
targeted towards scientific disciplines such as bio-informatics. CORBA [82] is particularly well-known system based
on this architecture, which models services as objects that can be accessed remotely through method calls.

The recent popularity of peer-to-peer architectures [86] provides many useful insights into the ways in which
large-scale distributed systems can be effectively built. Traditional approaches to grid computing, particularly those
concerned with heavyweight grids, have relied on systems that require extensive installation and configuration efforts,
and often rely on manual specification of many system parameters. Often these are registered with a central authority or
hierarchical system such as a directory service, an action which requires appropriate authorisation from other parties.
Many peer-to-peer systems, on the other hand, have successfully been deployed across the Internet on the scale of
millions of nodes, with little or no system administration effort required. All that is involved in connecting a machine
to such a network is for a user to install a simple piece of software, which then connects to a few other nodes running
on other people’s desktops, and from there is able to access either the entire network or large parts of it. This approach
to distributed systems design has received little attention in mainstream grid computing research, which has largely
concentrated on the former approach. We argue that such architectures are applicable to grid computing. While a full
investigation of peer-to-peer grid computing systems is outside the scope of this project, we intend to consider this
approach as part of our investigation of scheduling strategies, as distributed mechanisms of this type are particularly
suited to the scalability requirements of grids.
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2.2 Execution Models

A grid computing system supports one or moreexecution models, which dictate ways in which computation is per-
formed, data is accessed, and the operation of applications and resources is controlled by users and system adminis-
trators. While the grid itself provides the underlying infrastructure, an execution model describes the way in which
this infrastructure is used. Some grid systems are designed with one particular execution model in mind, while others
allow a range of different models to be used. The flexibility to choose an execution model appropriate to one’s needs
is a desirable property of a grid, and numerous existing grid systems allow this.

Grid execution models have evolved from previous computing paradigms such as batch processing, client-server,
mainframes, and the world wide web. They have been adapted for use in distributed environments, and have proven
to be very useful approaches for running applications in such environments. An overview is provided here of the two
most common models,job submissionandservices, and the differences between them, as well as ways in which they
can be combined.

2.2.1 Job Submission

In the job submission model, a client submits an application to one or more resources for execution. The application
may be run immediately or at some future point in time. The client is notified upon completion, and is able to retrieve
the results of execution such as output and any data files the application has created or modified. When submitting
the job, the client supplies the executable file, or the name of a program already installed on the host, along with any
other input files and information about how to run the application, such as environment variables and command-line
arguments.

The main use of the job submission model is to allow users to run applications on more powerful systems on
the grid than they have access to locally. Instead of executing programs on their local workstation, a user may send
job submission requests to remote machines on the grid, which enable the application to complete sooner, or multiple
instances of the application to be run concurrently on different machines. This approach has similarities with traditional
batch processing systems, in which a large, powerful computer is responsible for running jobs provided by users,
except that instead of just the one machine, a user has access to potentially large numbers of hosts distributed across
the network.

When choosing a machine to run a particular application, the user must submit it to a resource that provides the
necessary capabilities for executing the program. These requirements generally include the hardware platform and
operating system, as well as other software dependencies such as shared libraries and external programs that are used
by the application. In some cases, dependency on specific hardware or operating systems can be avoided through
the use of an intermediate layer such as a virtual machine, however this still constitutes a platform on which the
application runs, and must be provided by a machine in order to run the application. A job can only be run if all of its
requirements are met; this restricts the set of machines on the grid that can be used for a particular job to the subset that
satisfy the requirements. Even if the job submission request references an already-installed executable file instead of
uploading one, it still requires platform and installation dependent information such as the path name of executables,
configuration settings, and environment variables.

There has been a large number of different job submission systems developed for use on clusters, many of which
are reviewed in [11]. Some of the main features supported by many of these are as follows:

• Load balancing[67] involves allocating jobs to cluster nodes such that the amount of machine load is evened
out between them. Assigning all jobs to the one machine is likely to heavily overload it; spreading them out
appropriately means that there is an approximately equal amount of processing work assigned to each machine.
A cluster controller must monitor the load of each machine, and offload work to other nodes if one is becoming
overloaded. This improves the performance of the system and reduces application run times.

• Checkpointing[72] allows the complete state of a process to be saved for disk so that it can be continued later
from the point at which the checkpoint is taken. This allows a process to be stopped, and then resumed at a later
point in time by recreating the process based on the saved state. This can happen as a result of a request to pause
a processes, or if a system crash occurs during a long-running computation, avoiding the loss of all work done
during that computation.

• Process migration[41] is where a process running on one machine moves across to another machine and contin-
ues execution. It is particularly useful for load balancing; if a machine becomes too heavily loaded, then some
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of the processes on it can be migrated to other machines. It can also be used in situations where a particular
machine needs to be shut down for maintenance purposes; any programs that were running can continue else-
where after the machine is taken offline. Process migration is sometimes implemented using checkpointing; the
state of a process is saved to a file, copied to another machine, and then used to restart the process on the new
machine.

• Job suspension[65] involves checkpointing the state of a process to disk, and storing it somewhere so that the
job can be resumed at a later point in time. It is sometimes used when jobs have been started on an user’s
workstation while it was unattended, and the user has returned and wishes to use it once again. It means that the
computation being performed by the machine can be paused, and then continued at a later point in time, such as
when no user activity has been detected for some period.

• Runtime limitscan sometimes be specified for jobs to ensure they do not consume more than a certain amount
of CPU time. This can be used my administrators to control the way that resources are used and to prevent
runaway applications from taking up too much of the system. Usually, an application will be either terminated
or suspended after it has reached its allocated CPU time. Limits on other types of resource usage such as storage
and network traffic may also be supported.

Systems which allow for jobs to be submitted and assigned to resources are calledresource managers. They take care
of all the low-level details such as receiving and parsing job submission requests from users, copying files between
client machines and individual nodes on a cluster or grid, performing the appropriate authentication and authorisation
required to run a job, monitoring the execution of jobs and providing feedback to administrators, and many other as-
pects. The specific functionality provided by the resource manager varies a lot between different packages; sometimes
this functionality is provided by external pieces of software, and sometimes other functionality normally provided by
separate systems is included in the resource manager.

PBS (Portable Batch System) [56], originally developed at NASA, is designed for providing flexible mechanisms
for executing jobs on clusters. It provides extensive control over scheduling policies by allowing administrators to plug
in different scheduling algorithms, and these can be implemented in any one of several different languages. PBS also
provides support for routing jobs from one location to another, and performing staging of data files to remote hosts
before executing jobs that depend on those files. TORQUE (Tera-scale Open-source Resource and QUEue manager)
[31], based on PBS, adds numerous additional features such as better fault tolerance, extra scalability, better logging
facilities, many bug fixes, and provides better integration facilities for schedulers.

LSF (Load Sharing Facility) [89] provides a transparent view of a collection of different machines. It allows jobs
to be submitted and run in a variety of different modes, including sequential and parallel jobs, as well as interactive
or batch modes. It achieves transparency by running applications in an environment that appears almost identical to
that from which they were submitted, avoiding problems caused by different file locations, user names, and other
environmental attributes. Fault tolerance is also provided for all jobs that are submitted.

IBM’s Load Leveler [61] supports both clusters and multiprocessor machines, and provides a similar feature set to
that of PBS and LSF. It contains a central scheduler to which all jobs are submitted, and then distributed to nodes in
the cluster. New nodes can be added to the cluster dynamically, and the system will be able to make use of them. Users
of individual workstations can specify when and how their machine is available for use by the cluster management
system. Load Leveler also supports the job submission syntax of the older NQS system [93].

Condor, mentioned previously, is designed as a system for managing execution of jobs on a cluster or network of
workstations. It uses a job submission system which allows users to supply many job parameters and an executable
file, which is sent to an appropriate machine for execution. It matches jobs to machines based on the requirements
specified by the job and certain conditions specified by each resource. It also includes a number of different types
of execution environments, which support different features such as checkpointing, process migration, and parallel
programs.

A widely used resource manager for grid environments is GRAM (Grid Resource Allocation Manager) [36], part
of the Globus toolkit. GRAM provides an interface to which users can submit job requests specified in RSL (Re-
source Specification Language). The syntax of RSL allows information such as environment variables, command-line
parameters, input files, and other details relevant to the job to be specified. The name of the executable can either
be given as a file that already resides on the server, or a file on the client machine that is transferred via the network
before execution. A successor to GRAM, included with the Globus toolkit, is MMJFS (Master Managed Job Factory
Service) [104], which provides similar functionality using a web services interface. Both of these are intended to act
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as front-ends to local job submission systems such as PBS, LSF and others described above, for clusters and parallel
computers that are made available as nodes on the grid.

While GRAM and MMJFS allow jobs to be submitted to individual grid resources, by themselves they do not
support submission to multiple resources. Co-allocation [37] is a technique often used when multiple resources are
required in order to run a job. It involves negotiating with the relevant resource management systems to get guarantees
about what resources will be available and when, and ensuring that these are in place before an application is started.
Advance reservation [46] mechanisms can be used to obtain these guarantees, and are particularly useful in situations
where starting a job must be an atomic operation; it is often undesirable to have some parts of a job running when others
have failed to start up. The Globus toolkit includes a co-allocator called DUROC (Dynamically Updated Resource
Online Co-allocator), and is particularly useful for supporting parallel programs within a Globus grid.

The responsibility for deciding which resources will be used to execute jobs and when is generally handled by
a scheduler, which is a separate entity from the resource manager. Some of the resource managers listed above
provide extensive support for plugging in different scheduling systems. The resource manager is essentially a low-
level mechanism for using the grid; a scheduler is a higher-level entity which provides more overall functionality, such
as providing a more transparent view of a collection of resources to a user, by hiding a lot of the specific details of the
resources. Grid schedulers are discussed further in Section 2.5.2.

2.2.2 Services

The services model is similar to that of client-server computing, where a server provides the ability to perform certain
processing on behalf of a client, and the two communicate together to invoke operations. A server provides one or
more services, each of which contains an interface with operations that can be invoked by a client using a messaging
protocol such as Sun RPC [106], XML-RPC [125], DCOM [102], MSMQ [39], or CORBA [82]. At the programming
language level, these operations are typically invoked using method or function calls in a similar manner to the way
in which local procedures are used. These are translated by the runtime system into messages that are sent over the
network to the server, which executes the relevant code and then returns a response to the client. Operations can
either by invokedsynchronously, where the client pauses execution while waiting for the operation to complete, or
asynchronously, where the client continues executing while the operation is performed in the background.

Because the client and server interact only using standard protocols, the client needs no knowledge of the server’s
platform or implementation details of the service. Additionally, the server does not need any information about how
the client operates, other than the knowledge that it speaks the protocol. Therefore, the client and server can interact
with each other in a platform-independent manner. A client can access different implementations of a service on
different machines in exactly the same manner, as long as they conform to the same interface. The operations included
in an interface, and the data types that they expect, are declared in a description language such as IDL [81].

In general, the set of services provided by a particular machine is decided by the administrator of the machine,
who must specifically install and configure the desired services [69]. All of the executable code necessary to imple-
ment the service resides on the machine for the entire lifetime of the service instance, and is executed in response to
requests from clients. A separate software component provides the necessary interface to the service implementation,
translating operation requests received via the network into the actions and data necessary to perform an operation on
the machine.

Services often reside within a middleware frameworks known asservice containers. These provide all the nec-
essary support mechanisms such as protocol support, security and manage-ability. Administrative functions include
deploying, configuring, starting, and stopping services. Examples of service containers include Apache Axis [8], Ora-
cle Application Server [84] and IBM’s WebSphere [14]. While most of these systems rely on administrator-controlled
setup and installation of services, the notion of reconfigurable, component-based middleware has been proposed as an
architecture which extends traditional middleware to be more dynamic [33]. Systems build around this model would
more easily support the addition of new services and configuration changes to them, without necessarily requiring
administrator intervention. Dynamic service deployment is discussed further in Section 2.2.3.

The most prominent model of services at present isweb services[24]. This model is based on the world wide web,
where clients and servers can easily communicate with each other in a platform independent manner. However, unlike
the traditional view of the web where largely unstructured content is accessed by human users, web services involve
client programs accessing remote services that implement well-defined functionality. Service interfaces specifying
sets of operations that can be invoked by clients are defined using WSDL (Web Services Description Language) [126],
and messages are exchanged using SOAP (Simple Object Access Protocol) [127].
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The web services model has been extended to Grid Services [47], which provide additional functionality desirable
in a grid environment such as security, authentication, service instantiation, and lifetime management. The OGSA
model [47] defines an architecture in which clients caninstantiategrid services, which remain in existence over some
period of time, and eventually get destroyed either at the request of a client or due to a timeout. Clients interact with
a service instance through a GSR (Grid Service Reference), which contains all of the information required to send
messages to the service. At the programming language level, these are mapped into specific constructs such as objects
or pointers. OGSA also specifies mechanisms by which clients can subscribe to services and receive notification of
certain events that occur. The OGSI (Open Grid Services Infrastructure) specification [116] defines implementation
details of the architecture in terms of specific service interfaces and operations. Current implementations of the
standard include Globus 3, OGSI.NET [123], and pyGridWare [40].

The recently-proposed WSRF (Web Services Resource Framework) [42] re-factors many of these concepts into
WS-Resources, which are similar in nature and functionality to grid services [34]. The main difference is that where
a grid service represents a service and its state, a WS-Resource considers these to be separate entities, but represents
a pairing between them. A given web service, provided by a machine, contains internal functionality and a set of
operations that can be invoked by clients, but it does not maintain any state. Instead, this is captured in a stateful
resource, an implementation-defined entity that is used by the web service whenever an operation is invoked. A WS-
Resource thus represents a stateful entity and the operations which can be performed on it. This specification is being
implemented in the upcoming Globus 4, WSRF.NET [60], and also pyGridWare.

A number of other service-based grid systems have been developed prior to the standardisation efforts around web
services. NetSolve [21] uses services implemented in native libraries and makes them accessible via a custom protocol.
Clients wishing to access these services must link with the NetSolve client libraries which provide a programming
language interface for invoking remote operations, and support for the protocol used to communicate with the services.
Requests are sent from clients to a central authority which uses a load-balancing technique to select a specific resource
from the list of those which provide the service. The request is then routed to that resource, where the relevant function
in the shared library is invoked to perform the requested operation. The interface used by clients to access services
is simple, but provides only limited functionality - data types are restricted to scalars, vectors and matrices. While
only NetSolve libraries can be used to access the services, the protocol is platform independent, allowing clients to
access different implementations of a service. Ninf [97] is a similar system which provides more or less the same
functionality; however, it allows services to be implemented as separate executable files, making deployment easier.

2.2.3 Hybrid Approaches

The key difference between the job submission and services models is that in a job submission system, the client
generally needs platform-dependent and installation-specific knowledge in order to use a remote machine. This most
often involves the specific execution environment provided by the server, if the client is sending an executable to be
run, but can also include details such as full path names of files on the server, specific command line arguments that
must be supplied, and values of environment variables that need to be set. This difference has significant implications
for the range of functionality that can be provided by a given host, and the ease with which heterogeneity can be
supported. Most existing uses of grids focus only on one approach or the other - either treating the grid as a pool of
arbitrary resources that can be used to run any type of application, or a collection of services that reside on particular
machines and are used for specific purposes. There are, however, ways in which the two approaches can be combined.

Job submission servicesprovide a service which accepts either program executables or pathnames of executables,
as well as other details relevant to running the program, and then launches execution of the program. This uses a
service interface accessed through an RPC protocol to transfer the program and data files and other information from
the client, and job submission and status querying are treated as operations that can be performed on the service. This
represents a case of implementing job submissionon top of the services model. An example of this is MMJFS [104],
a grid service included with Globus 3 which implements a job submission mechanism.

Dynamic service deploymentis where the code for a service is supplied by a client, instead of already residing
on the remote machine, but then the client interacts with the executing code through a service interface. Once the
service is launched is accessible in the same manner, and the client makes RPC calls to perform specific operations
which in turn translate to execution of certain portions of the submitted code. This represents a case of implementing
serviceson top of job submission. An example of a system supporting dynamic service deployment is OGSI.NET,
which contains ameta-factory servicewhich accepts as its parameters one or more .NET assemblies that implement a
service, and then instantiates that service by executing the submitted code.
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Hybrid programsare those that use both job submission and services to perform their processing. An application
resides on the client machine, from which it submits individual jobs to other machines to perform certain portions
of its work, and invokes operations on services to perform others. The programming model used in this case would
provide mechanisms for both; for example, creating a new thread and having it placed on another host, and allowing
remote services to be accessed through method calls. This represents a case of implementing job submissionalong
side of services. An example of a hybrid program would be a Java program that uses the CoG Kit [119] to access
resources via the Globus infrastructure to submit jobs to remote hosts that perform part of its computation, and make
calls to grid services to perform other operations. Hybrid programs such as this are of most relevance to the research
proposed here.

Finally, programs which are submitted to a job submission may also access services while they are running. In this
case, the “client” is actually the host that is executing the submitted program, while the “server” is the machine that
provides the service that the program connects to.

2.3 Parallel Processing

In the MIMD (Multiple Instruction Multiple Data) architecture, aparallel processconsists of multiple, independent
execution streams of instructions, calledtasks. The tasks can be executed by different processors, possibly residing
on different hosts. The tasks interact with each other during execution. When they are distributed across machines,
this interaction is in the form of messages sent across a network. Theprocesshere is a logical grouping of tasks that
are interacting with each other. Some part of the system has knowledge of all of the tasks associated with a process
and where they are being executed, and coordinates operations such as creating new tasks and assigning them to hosts.
From the point of view of a parallel processing system, asequential processis simply a special case in which there is
only one task.

In a distributed system capable of executing parallel programs, it is generally possible for each host to concurrently
execute multiple tasks from the same or different processes. Figure 1 shows an example of a system with two processes,
each of which has a set of three tasks distributed across three hosts. Each host executes a task from each process. In
this situation, the part of the system that maintains task and process information must also support the concept of
multiple concurrent processes, and distinguish them from one another. Each task belongs to a particular process, and
its lifetime is restricted to be within that of the process. Tasks only interact with other tasks in the same process.

Host

Thread

Thread

Host

Thread

Thread

Host

Thread

Thread

Process 1 Process 2

Figure 1: Multiple parallel programs running on a set of hosts

When a host has one or more tasks running on it, it is necessary for it to provide some mechanism for these tasks to
interact with entities external to the hosts, such as other tasks, and the part of the system managing process execution.
This interaction may be for purposes of inter-task communication, data access, or administrative functions such as
launching or terminating other tasks. The host must must provide an external interface which provides a method of
communicating between these external entities and the tasks. The interface may provide other functionality such as
identifying which tasks reside on a machine, or creating new tasks on the host.

A central component of the system maintains information about all processes that are running, which tasks are
associated with them, and where those tasks reside. It is responsible for interacting with the hosts to send data to or
from tasks, and to create, terminate and possibly migrate running tasks from one host to another. Tasks running on
one host may use this component to communicate with other tasks, or connect to the external interfaces on the other
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hosts directly. The specific functionality of the component, and the semantics by which tasks are communicated with
and controlled on the hosts varies between different types of parallel, distributed systems.

In job submission systems used for parallel computers, each job normally corresponds to a process consisting of
multiple tasks. The set of tasks is monitored, and once all of them have completed, the job is considered finished. In
this way, the user can manage the running of a process as a single entity, despite the fact that internally it consists of
multiple concurrent components. Another view, more common in cases where there is no interaction between tasks, is
to consider each task as a separate job. In this situation, the parallel “program” is normally a script or set of commands
to the job submission to launch the same or different programs with different parameters, and the output is stored
in separate files which are collated or analysed later. This approach is also used sometimes when running parallel
programs on a grid system that does not directly support parallel jobs.

The concept of processes and tasks can also be used within the context of the services model. In this case, there is
a parallel or sequential process consisting of one or more tasks, and also services that are being accessed. The services
are essentially like tasks in the process; the main difference being that the code to implement them already resides
on a particular host and they are accessed via a remote procedure call-style messaging protocol. Despite the different
instantiation and communication mechanisms used for services, the computation performed by them is still essentially
part of the parallel process, because the code is being executed on behalf of the process.

2.4 Data access

All grid applications rely on data in one form another, whether it resides in data files, databases, or other forms. Often,
the amount of data needed by an application is large, and requires significant communication between the program
and the file storage location. In some cases the data may be accessed locally, and in other cases it may be accessed
remotely. Many different types of storage mechanisms and network file systems exist for accessing data.

When running an application on the grid, it is desirable to keep the computation close to the data, to minimise the
amount of time that the application must spend while waiting to read and write from files. This is particularly true in
a wide area network environment where there may be slow data links, resulting in high overheads for accessing large
files located on another machine. Just as when using a job submission or service model to perform processing it is
necessary to select an appropriate machine to use, it is also necessary to select a suitable place to store the data that
makes it easily accessible to applications.

The most common method used by applications to access data files is through native operating systems APIs or
equivalent constructs provided by the programming language, such as C’sfopen() function or Java’sFile class.
These can be used to directly access any file residing on the filesystem of the machine in which the program is running,
such as a local hard disk or removable media. Many operating systems allow remote file systems to bemounted, which
imports the namespace of an external storage system into the local one under a particular prefix, such as a mount point
under UNIX or a drive letter under Windows. Common protocols for accessing remote file systems in this manner
include NFS [96], NCP [77], CIFS [70], and AFP [9]. Many distributed file systems, such as AFS [98], Sprite [79],
xFS [7], and Coda [99] can also be accessed in a similar manner.

Not all remote data access protocols are commonly supported by operating systems as mountable file systems. If
files are residing on a remote server, and it is not possible to access them through the operating system’s normal file
access mechanisms, it is necessary to connect to the remote server either directly, or indirectly through some other
layer of abstraction. A common way of doing this is to use a library linked with an application that implements
the client-side of the protocol, and provides functions accessible to a programmer which allow files to be accessed.
Examples of these include Java’sURLConnection class [108] and Condor’s Chirp library [32]. In some cases these
libraries support a range of different file access protocols, such as the GASS client library [17].

Another way for an application to access a remote data source is through the use of aninterposition agent[63],
which provides a layer between the application and the operating system, and intercepts API calls, providing an
alternative implementation which redirects the operation to a remote machine. For data access, calls such as those
used to open and read from files are replaced with implementations that connect to a remote server and transfer
data, instead of opening a file on the local file system. Interposition agents can be implemented at user-level, and
provide an easy, transparent mechanism for redirecting normal file access calls to a remote machine, making them an
attractive way of enabling legacy or commercial applications to make use of grid technologies without recompilation
or modification [113]. An example of a remote file access system implemented in this manner is Parrot [114].

The termdata grid [27] is used to describe grids that are designed with the goal of supporting applications which
require access to very large amounts of data. Often these involve read-only access to data sets produced from scientific
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experiments. The approaches to data storage in such a grid are different to the traditional approach of simply accessing
a file system on a single remote machine - files in a data grid are distributed across multiple machines in different parts
of the network, and often multiple copies, orreplicas, are present. This enables a much larger amount of data to be
stored than would be possible on any single machine, and replication allows for fault tolerance and faster access, by
allowing a user to access the replica that is closest to them on the grid.

An example use case of a data grid is the upcoming high energy physics experiments that will be performed using
the large hadron collider currently being constructed at CERN, due to go into operation in 2007 [59]. The collider will
produce several petabytes of data per year, which must be made easily accessible to thousands of physicists all around
the world. It would be impractical for all of these users to access one copy of the data residing in a central location; the
demands on the network and hardware containing the data set would be enormous, and access from distant locations
would be slow. Instead, separate copies of the data set will be stored at key locations in different geographical areas
around the world, and relevant subsets of it will reside at individual institutions. A physicist wishing to access some
portion of the data will do so using one of these replicas, either by copying the relevant data to a local machine, or by
arranging for the processing to be performed on another machine which has high-speed access to the data.

2.5 Scheduling

Scheduling, in its most general form, refers to the allocation of resources over a period of time for specific purposes.
Decisions about which resources to use and when are made based on information about the resources themselves, and
the ways in which applications wish to utilise them. The objective when performing scheduling is to optimise for one
or more variables, such as job completion time or resource utilisation. The termschedulerefers to a set of resource
assignments, either at a fixed point in time or over a period of time, and is the result of the processing performed by
a scheduler. The nature of these assignments, and the way in which they are derived, varies greatly between different
types of systems. Three types of scheduling are discussed here:computation scheduling, data schedulingandservice
scheduling. Computation scheduling is considered both in the case of traditional parallel computing systems, as well
as emerging grid technologies.

2.5.1 Computation Scheduling on Parallel Computers

Much of the previous work in the field is targeted at parallel computers that consist of either tightly-coupled shared
memory machines with many processors, or clusters consisting of a large number of commodity, off-the-shelf ma-
chines. These architectures differ from grids significantly in that they have high-bandwidth, low latency communi-
cations links between them, and are all under the central control of a single authority. Scheduling in this context is
a simpler problem because the scale of the machine is limited, and the scheduler has complete control over every
program that is executed. This is significantly different from a grid environment, where there may be additional work
being performed by resources at the discretion of individual owners.

A good overview of scheduling algorithms for tightly-coupled parallel computers is given in [26]. All of these
algorithms give jobsexclusiveaccess to processors - each processor can be executing at most one job at a time. Usually,
a job must run to completion before the processor(s) it uses become available again for other jobs. Sometimes, pre-
emption is supported, in which a job is suspended temporarily to allow another job to use the processor for a short
period of time. The exclusive model has been used in a large amount of parallel computing research, and is promoted as
being a good choice due to the fact that it is simpler to consider one job per processor than multiple jobs per processor,
and because keeping only one application in memory reduces the extent to which virtual memory is required, avoiding
the associated performance penalties.

An alternative model is where jobs havesharedaccess to processors, and the multi-tasking features of the under-
lying operating system provide the ability to run multiple multiple jobs on a processor using time slicing. This is less
common in clusters and shared-memory parallel computers, but can be useful for a number of reasons. One is that
higher processor utilisation can be achieved by allowing tasks to be executing while others are blocked on I/O requests
or synchronisation points [44]. Another reason is that submitted jobs do not need to wait for processors to become
free before starting - this is particularly beneficial when attempts are made to run a short job when all the processors
are busy executing a long-running job. Our proposed research takes into account both exclusive and shared processor
access.

The choice between exclusive and shared processor usage has important implications for the scheduling algorithm.
With the exclusive approach, jobs can only be run when there are enough processors available to execute them, mean-
ing that the start time of a job may be delayed significantly. In this model, a schedule can be represented graphically as
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Figure 2: Graph of CPU usage in a parallel computer

a 2-dimensional graph, with the columns representing processors and the rows representing periods of time, as shown
in Figure 2. Each cell is shaded according to the job that is assigned to the relevant processor during the corresponding
time period. This visual representation allows for the processor utilisation to be easily seen by looking at how much
of the grid is shaded. Often, there will be “holes” in the schedule corresponding to processors that go unused for
some time because no job can be assigned to them. These occur when there are jobs in the queue which require more
processors than are available during that time period. A technique calledbackfilling [130] is often used to allow short
jobs to move ahead in the queue to utilise these processors, as long as they do not cause the delay of other jobs that
reside before them in the queue. In grid environments containing these types of parallel computers, process migration
can sometimes be used to offload work to another machine that does have enough processors available to provide
exclusive access.

In the shared model, the assignment of jobs to processors can be represented as a 3-dimensional graph. Columns
and rows still represent processors and time periods, but the third axis shows multiple jobs being assigned to a pro-
cessor during a given time period. Because most multi-tasking operating systems allow either a large or theoretically
unlimited number of concurrent tasks to execute on a processor, the third axis can extend as far back as possible to
represent as many tasks as necessary. In such a schedule, the “holes” sometimes found in 2-dimensional schedules are
not present, as jobs can be started immediately, instead of being delayed and processors therefore going underutilised.

Many scheduling algorithms devised for parallel computers rely on knowledge about how long an application will
take to execute. These are generally supplied by a user, who must estimate how long their job will take to run, by
methods such as doing a test run with a smaller data set and multiplying the time appropriately. These time estimates
are only reliable given sufficient knowledge of the hardware, and the way in which the application performs on it.
Obtaining these estimates can be a non-trivial task, and sometimes users may supply less accurate estimates due to
the difficulty of determining them properly [78]. While it is often possible to predict execution times for programs
on parallel computers where the scheduler and job submission system is tightly integrated with the computer, it is
far less practical on a grid, where resource capabilities differ significantly, and many other factors such as network
utilisation, machine failures, and other workloads can influence the performance of an application. Therefore, the
research proposed here does not rely on this information.

A major reason why scheduling on a parallel computer is simpler than that of a grid is that a parallel computer has
a central point of control. The scheduling and job submission mechanisms have complete knowledge of and authority
over all of the individual processors, and can make assumptions about their availability and capability to execute jobs.
All work that the processors do is under the control of this single scheduler, which does not have to contend with other
activity outside of its control. Additionally, the scheduling algorithm only needs to scale to the number of processors
in the parallel computer, which is limited to a few hundred or possibly a few thousand, even in the largest computers.

In contrast, a grid potentially has a much larger number of processors, none of which are under the complete control
of the grid scheduler. Each resource in the grid may also be used by its owner for other purposes, and be performing
activities that are not visible to the rest of the grid. The fact that millions of processors may potentially be available
also requires the use of more scalable algorithms, and the need for high availability necessitates distributed implemen-
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tations. Algorithms designed for parallel computers cannot be directly applied to a grid environment, because many
of the assumptions they rely become invalid.

2.5.2 Computation Scheduling on Grids

In a parallel computer, the location and start time of jobs is determined as part of the same process, as the entire
computer is under the control of a central authority. In a grid, however, the process is more complicated because each
individual node has autonomy. In this situation, the problem is split into two parts:local schedulingandmetaschedul-
ing.

A local scheduler resides on each computational resource on the grid, and, when it receives a job to be executed on
that resource, decides when the job will actually be executed. Some local schedulers only permit one job at a time to
be executing on a particular resource; others that are submitted while it is busy will be put in a queue and started once
the job completes. Other local schedulers allow more than one job to be running on a resource at a time, by using the
multi-tasking features of the underlying operating system. In the latter case, a job submitted to a resource will start
immediately and run concurrently with the other jobs.

A metascheduler, orresource broker, makes decisions about which resources will be used to execute a particular
job. When a job is submitted to the resource broker, it uses information about the available resources and possibly
other running jobs to decide when and where the job should be executed. It may postpone execution until one or
more resources becomes available, or start the job immediately on a resource that is chosen according to some criteria,
such as lowest amount of load. A metascheduler may assign the different tasks of the job to different resources, and
possibly migrate tasks from one resource to another while running, if this is supported by the execution environment.
The problem of determining optimal task placement for a set of hosts has shown to be NP-complete, so heuristic-based
approaches are generally used [18]. In cases where a parallel computer or cluster is represented as a single resource on
the grid, a local scheduler may also be responsible for assigning tasks to specific processors, in a similar manner to the
way in which the metascheduler assigns tasks to grid resources; this is effectively a second level of metascheduling.

There are three phases in the process of metascheduling, as described in [101]. The first phase,resource discovery,
involves creating a list of candidate resources from all of those available on the grid, based on the ability of those
resources to execute the job. All of the resources in this list must meet certain minimum requirements, including
matching the correct platform, and providing the user with the authorisation to use them. The second phase,system
selection, gathers information about these resources and figures out which ones are likely to provide the optimal
execution time for the application. They are usually ranked in order of execution time, or some other related parameter,
and the top ranking one is chosen. In the third phase,running the job, the program executable and other related
information is actually sent to the resource, which then executes it. In some systems, launching of a job is considered
separate from the process or scheduling itself, and in others the job submission mechanisms are tightly integrated with
the scheduler.Reschedulingis the process of repeating these steps and then migrating the task to a new location. This
is particularly useful if the load on the machine running the task becomes heavy, and performance gains could be
obtained by using a different host.

Metascheduling may be done at the application level, or globally.Application-level metaschedulers, such as used
in Nimrod/G [1], AppLeS [15], and MARS [50], are run whenever a job is to be submitted by a user, and operate
by selecting resources based on information available about those resources, such as their network connection speed,
CPU load and other parameters. They then make the choice about where to run the application based on which
resource appears to be the optimal choice. Details of other applications that are already running, or being concurrently
submitted, are ignored.Global metaschedulers, such as those included in GrADS [117] and Utopia [129], on the other
hand, take into account information about resourcesandother jobs. Because they posses a wider range of knowledge
about what is happening on the grid, they can make more informed decisions, thus resulting in better application
performance and resource utilisation. This can be important in situations where information about other applications
is relevant to making the scheduling decision. For example, with application-level schedulers, a large number of jobs
submitted at the same time could all be assigned to the one host, if this host appears to be the best choice just by
looking at its properties and not the other jobs. But a global scheduler would recognise that the jobs need to be more
widely distributed in order to obtain good performance. For this reason, the research proposed here will focus on
global metascheduling.

Metaschedulers can operate in either acentralisedor distributedmanner. A centralised metascheduler [128, 48]
consists of a central point to which all jobs are submitted, and uses information about all hosts available on the grid to
make decisions about which hosts should be used for which jobs. A distributed metascheduler [25, 54, 16] divides the
responsibility for job scheduling among multiple hosts on the grid, providing fault tolerance and scalability. However,
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distributed algorithms are more complex than centralised algorithms, and so implementing a distributed metascheduler
is a more challenging task. Centralised schedulers are still relevant in many situations where the size of a grid is limited,
such as within a single organisation or set of collaborating institutions. The research proposed here will look at both
of these types.

Most existing metaschedulers are designed for sequential jobs. When an application consisting of multiple tasks
is run on the grid, each task is often scheduled as an independent job, without taking into account its relationship
to other tasks. This can be problematic if two tasks that interact with each other during execution are placed on
separate machines, and the network connection between them is slow. Local schedulers which put the jobs on separate
queues and start one before the other can also cause problems, because the first one may need to wait until the other
starts before performing the main part of its computation. For this reason, knowledge about the structure of a parallel
program needs to be used by the metascheduler when making placement decisions. Interacting tasks should be placed
close together on the grid, and started at the same time; this is only possible with appropriate direction from the
metascheduler. These aspects of scheduler design form part of our proposed research, further detailed in Section 3.

A trade-off exists between the degree to which a grid middleware system allows resources to be independent and
the ease of making good scheduling decisions. If the scheduler was to have complete knowledge of and control over
every aspect of the individual machines, it could guarantee that the performance of the programs it schedules will not
be affected by outside influences that it cannot predict. However, this level of control is impractical on grids where
owners of individual machines still want to have the ability to run other applications and control the way in which
their machines are utilised by the grid. But if the scheduler has too little information to work with, for example if it
does not know what other jobs are running on the machine, then the resulting scheduling decisions are of much less
quality [49]. When designing middleware, it is necessary to pick a point along the spectrum that provides enough
information and functionality for the scheduler to operate effectively, while still allowing each machine to maintain a
certain amount of control over what can run on it and when.

One way in which the autonomy of individual resources has consequences for the scheduling mechanisms is
how clusters are integrated with a grid. A cluster may be represented as a single resource, with all jobs sent to the
local scheduler on the front-end machine, which then assigns it to one or more nodes in the cluster. Alternatively,
each individual cluster node may be individually accessible on the grid, so that the scheduler sees a collection of
resources comprising the cluster, and decides which nodes to use itself. The latter approach gives more power to the
metascheduler, because it has more information to deal with. If the cluster is represented as a single resource, this
complicates the scheduling of parallel programs, since the metascheduler must have specific knowledge that multiple
machines reside in a single resource in order to send multiple tasks to it. The front-end must also ensure that if the
machines can only be used by one task at a time, then it communicates only the number ofavailablenodes to the
metascheduler at any given point in time, and that the failure that occurs in a single cluster node is not interpreted as
failure of the entire resource.

Metascheduling can also make use of knowledge about the structure of an application. Master-Worker style ap-
plications are relatively simple to schedule, with the clear division between work units and explicit communication
patterns [57]. Directed acyclic graphs specifying the dependencies between components of an application make the
ordering explicit, so the scheduler knows when that particular tasks can begin execution only after certain other tasks
have completed [3].

Another type of information that can be useful to a metascheduler is the details of the network topology and per-
formance [107]. By considering the amount of bandwidth available between different resources in the grid, and the
communication requirements of an application, choices can be made in such a manner that the need for computational
power is balanced with the need for fast data transmission. Jobs which are compute intensive can be scheduled to
faster processors even if the network connections to them are slow, while parallel programs which contain a lot of
synchronisation or data transfer between tasks are generally better off on machines connected at higher speeds, even
if they have slower processors. Locality of tasks also has an impact on performance [111]; tasks placed on machines
connected via a local area network are able to communicate with each other more efficiently than on machines dis-
tributed across a wide geographical area. Reducing the level of parallelism so that it can execute on a smaller number
of well-connected machines is sometimes a worthwhile trade-off to make.

2.5.3 Data Scheduling

Data schedulingis the process of making decision about where to place data files that are accessed by applications.
In order to obtain good performance, it is desirable to have the data files accessed by an application residing close
to where the application is run, preferably on the same machine or another to which it has a high-speed network
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connection. For this reason, scheduling applications to run on hosts purely based on an estimate of the computational
cost is less effective than also taking into account the costs associated with data access [91]. By using scheduling
algorithms that attempt to achieve this locality, data can be accessed faster and the load on network connections is
reduced.

The simplest form of data scheduling involves copying all of the required files to the host that has been chosen to
run a job. As part of a job submission request, the user must specify all of the files that are needed by the application.
The files are then transferred to the remote host before the job starts running, and the program can then access them
through the local file system. Once the job has finished, any files that were created or modified are copied back to
the original location. This approach is used by the job submission system in the Condor project [115], which allows
file sets to be specified as part of the job submission request. Copying data files whenever jobs are run effectively ties
the data scheduling to the computation scheduling, rather than making it a separate process. Other mechanisms can
provide more efficient placement strategies which optimise data across multiple jobs.

An example of these strategies useful for multiple jobs is that of pre-staging, where data files are placed on a host
before running a series of jobs which all rely those files for input. This can result in significant performance gains
compared to transferring the files each time, if there is a large amount of data or many jobs are being run. This has
been shown to be useful in particular for parameter-sweep operations, which involve a large number of jobs being run
with differing parameters, but which often use the same input files [22].

Data on the grid can be replicated across different sites [118]. Having multiple copies of a particular data set allows
a larger number of sites to have high-speed access to the data, increasing the range of possible compute resources that
can be chosen to efficiently execute a job that depends on that data, thus improving load balancing [92]. Creation of
replicas at various points throughout the grid is particularly useful for read-only access [87]; however, this mode of
access cannot always be assumed [88]. Cases involving read-write access to the data require mechanisms in place
to ensure the consistency of the different copies, such as the techniques described in [53]. Replica management
constitutes part of the data scheduling problem, because decisions must be made about when and where to create
replicas. By placing replicas in suitable locations, programs can have efficient access to data, reducing their execution
times.

One way of creating replicas is to do so manually, based on developer or user knowledge of the ways in which
applications access data. However, this can be cumbersome and time consuming, and so automated replication mecha-
nisms have been proposed as a desirable alternative. Directory-based replica management schemes have been proposed
in which all files and replicas distributed around a grid are registered with a centralcatalogwhen they are created, and
this catalog is searched by clients when attempting to access a particular file in order to find the most suitable replica
[4].

Peer-to-peer file sharing systems such as FreeNet [30], Gnutella [2], PAST [95], Kazaa [52], and others have
demonstrated scalable, efficient means of creating file replicas without any central point of control. These strategies
have been applied extensively for the purpose of trading music, software and video files over the Internet, but have
not been widely integrated into data management strategies for the grid. Doing so is likely to lead to useful insights
into scalable replication approaches for grid environments. Replica management systems are similar in many respects
to distributed file systems that support data redundancy. The main difference is that the management of file location
information and meta-data is generally separate from the actual storage mechanisms.

A way of ensuring that computation and associated data are close together, proposed in [13], is to group compute
and storage resources intoexecution domains, each of which is a set of resources that has high speed connections
between them. An example of an execution domain is a set of servers within a single department, with local access to
a large file store. Inter-domain access is generally slower, and therefore desirable to avoid. Computation is scheduled
such that it resides in the same execution domain as the data it accesses. Data can also be dynamically replicated or
migrated to other domains, depending on where it is needed by applications. A similar concept to execution domains
is that of I/O communities [112], where groups of computation hosts share a common storage appliance. Computation
and data is assigned to I/O communities based on data access needs of the jobs. Both of these rely on Condor’s
ClassAds mechanism [90], which allows resources and jobs to specify requirements. This allows available storage and
computational resources to be chosen based on the needs of applications, in these cases specifically the requirement
that computation be placed close to data.

While data scheduling, as used in this proposal, refers strictly to the movement of data, a closely related idea is
that of scheduling computation based on knowledge about data locations. By placing jobs in such a manner, shorter
execution times can be obtained due to faster access to the data. An example of this is theDistributed Active Resource
Architecture(DARC) [71], which provides infra-structural support foractive data repositories, which are essentially
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virtual data sources where the data made available is a transformation of data stored on disk, and generated on-the-
fly. A related concept is that ofactive disks[94], in which application code is executed on a processor built-in to
the physical disk drive. The scheduling of computation and data together as part of the same process has received
little attention, and work has been proposed to look at how replication strategies can be combined with traditional
computation scheduling techniques [122]. The research proposed in Section 3 shares some of the ideas behind this
approach.

2.5.4 Service Scheduling

Service Scheduling[5] is the problem of allocating requests for service access to specific hosts providing that service.
Whenever an application attempts to access a service to perform some operation, and a number of hosts on the grid are
capable of granting the request, a decision must be made about which host should be selected. Factors to be considered
when making this decision include the computational cost of performing the operation, the amount of data that must
be transferred as part of the request or response, external data sources that the service needs to access, and the load on
the machines that provide the service. During the course of its lifetime, an application may access a single instance of
the service on the one host, or multiple instances across different hosts.

When accessing a service, a program specifies a particular host it wants to connect to. This is done by supplying
a network address, and obtaining a handle to an object which can then be used to invoke operations. The address
is usually either hard-coded into the application or read from a configuration file. Once the connection has been
established, it is maintained over a period of time, and used for multiple operation invocations. For example, accessing
a remote object using Java’s RMI [109] requires a client to specify a URL string referencing the object on a particular
host, and returns astubobject referencing the service on the remote host, which can subsequently be used by a client
for multiple operation invocations. A similar method is used in CORBA [82], where clientsbind to an object on a
remote host, and use the resulting stub object to invoke remote operations. The equivalent concept in the context of
grid services [116] is that of the Grid Service Reference (GSR), which can be used to send requests to a remote service,
and is obtained in a similar manner.

Instead of requiring a specific network address to be supplied, some systems provide support forservice discovery.
This allows a program to specify a particular service it wants, and then discover the set of available hosts that provide
the service. Using this approach allows more flexibility, because the decision about which host to access a service on
is postponed until runtime, where it can be made based on information that was not necessarily available when the
program was written or compiled. A common way of performing service discovery is to consult aregistry, which
contains information about a set of services that have been registered with it. A client specifies certain search criteria,
including an identifier corresponding to the interface it wants, and receives a list of matching services to which it is
able to connect. The registry is commonly implemented as a directory service, such as MDS-2 [35], SDS [38], or
UDDI [10]. Additional ways of enhancing this search capability include semantic annotations to services [105].

Another method of discovering services is for clients to broadcast requests across the entire network, hoping for
a response from one or more hosts providing the service. An example of this is the discovery mechanism for lookup
services in Jini [120], which is designed to allow devices to join or leave a network without configuration changes.
While this approach removes the need to specify the location of a registry, the broadcast mechanism does not scale to
large networks, and is therefore undesirable for grid environments. Peer-to-peer discovery services [12, 58] have been
suggested as another approach which provides a higher level of scalability.

Once all available service instances have been found, and one has been selected for use, a client may begin sub-
mitting operation requests. However, after some period of time, it may be desirable to switch to a different instance of
a service if the host initially selected fails or becomes heavily loaded; these features are known asfail-over andload
balancingrespectively. If the service instance being accessed is stateless, and switching to a different one will have no
side-effects on the application’s behaviour, then the application can choose a different instance to which it will submit
further operation invocation requests. To do this, it is necessary toreschedulethe service access by obtaining the latest
list of available hosts providing the service, and performing selection again. The references within the application
must then be updated to point to the location of the new service instance bydynamically re-bindingthe relevant stub
or proxy object used to access the service [75].

Often, anobject request broker(ORB) is used by applications to provide location transparency of services [100].
This allows a program to access an object and invoke methods without knowing which specific host the request will
be sent to. At the implementation level, it will often be here that the scheduling decisions are implemented, by having
the ORB contact the appropriate host when service requests are made by an application. Proxy objects used within the
application typically interact with the ORB to provide this functionality.
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From a scheduling perspective, changing an application’s service reference to point to a different instance on
another host is a similar concept to migrating data or tasks during execution. Viewed from a high-level, it is simply
a component of the application that is being moved from one host on the grid to another. This makes sense when
considering the work done by a service on behalf of the application to be part of the application itself, in the same
sense that the code in a shared library can also be considered part of the application. The concept of scheduling
components of a running application, namely data and computation as described above, can thus be extended to
include services. Previous work has not considered the scheduling of service access in the same manner as other
application components; this deficiency is addressed in the work proposed in Section 3.

2.6 Summary

A large amount of research to date has considered the problem of providing effective ways of utilising heterogeneous
collections of computing resources in a grid environment. System and usage models vary widely, and many schemes
have been demonstrated for allocating applications to resources in order to optimise the performance. There are three
main types of scheduling that are performed to support this goal, namely those ofcomputation, data, andservices.
However, these types of scheduling have been considered separate from one another, and attention has not been given
to integrating the strategies used for such placement. Additionally, current approaches to computation scheduling
are primarily focused toward sequential jobs, and even those that support parallel jobs rarely take into account the
locality requirements and dependencies between tasks in the same process. The interaction between tasks has similar
implications for scheduling strategies to that of data and service access, however no existing schedulers take this into
consideration. It is these gaps which we propose to address with this project.
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3 Proposed Research

The research described here proposes to investigate the gaps identified in the previous section by developing and
evaluating mechanisms for performing scheduling of tasks, files, and services in a grid environment. While a major
aim is to develop these concepts at a theoretical level, our investigation will also look at implementation in existing
middleware.

3.1 Experimental Architecture

In order to contain the scope of the project, models for the grid environment and types of applications have been
chosen. These consist of a set of assumptions about the types of systems being considered here. All research done in
this project will specifically apply to systems which fit these models; to extend it beyond this, some of the approaches
taken or algorithms used may need to be modified in order to satisfy additional requirements. The assumptions
made here have been chosen to cover a wide range of grids that exist now and that are likely to be developed in the
future. Note that the model described here does not prescribe any implementation details; the protocols, programming
languages, operating systems, standards, user interfaces and other software or components are not specified. While
particular technologies will be used for exploring these concepts, the proposed research is targeted at the theoretical
level, in order to be applicable to a range of implementations.

3.1.1 Grid Model

A grid consists of a set of one or moreresources, each of which is a single computer with some amount of memory and
storage space. The machine may have either a single processor or multiple processors with access to shared memory,
although from an external point of view this is irrelevant. Access to the facilities of the resource is provided through
middleware, a software layer on top of the underlying operating system.

Some resources on the grid are capable of executing multiple tasks at a once, using time-slicing mechanisms
provided by the operating system or intermediate runtime system, while others can execute only one task at a time.
The local schedulers on each resource initiate tasks assigned to them immediately, without delays caused by job
queuing systems waiting for other processing to complete, or reject the job if multitasking is not supported and the
processor is busy. This prevents parallel applications from being delayed by having their tasks scheduled to run at
different times.

Each task runs within a specificexecution environment, which executes the sequence of instructions associated with
the task. This can be done through various mechanisms such as running a binary executable natively on the processor,
through a virtual machine, or in an interpreter. An execution environment also includes a set of interfaces to the
operating system and shared libraries. A host may provide zero or more execution environments. Each task requires a
specific execution environment, and can thus only be assigned to hosts which provide that particular environment.

A host may also provide zero or moreservices, each of which can be accessed through a messaging protocol which
is standardised across the entire grid. Like tasks, these services are implemented in a specific execution environment
provided by the host. A service may be accessed by tasks running either on the same host, or other hosts. The set of
services provided by a host is fixed; it cannot be changed by a running application. In this model, any computational
entity which can be sent to a remote host for execution is considered to fall under the definition of a task, as the
mechanisms used to communicate with it are implementation details only.

In addition to the work assigned by a scheduler, each resource may be running one or more other tasks that are not
visible to or under the control of the metascheduler. These typically consist of operating system or user processes run
by the owner of the resource. This means that the processor load can vary according to the execution of these other
tasks in ways that cannot be predicted by the metascheduler.

A resource may become unavailable for use at any point in time, due to various reasons such as network discon-
nection, operating system crash, middleware failure, or owner-initiated shutdown. It may then become available again
at a later point in time. Any scheduler built for the grid must therefore be capable of handling changes in the set of
available resources. When resources disappear, the failure should be reported to the end user of an application, or the
application should be moved to or restarted on a different set of resources. When new resources appear, the scheduler
should be able to make use of them.

Data that is accessed by applications is accessible from any point on the grid in a transparent manner. The details
how how a data file is accessed are abstracted away from the application by the middleware, so that it does not matter
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if the data is local or remote. Any transfer or remote access mechanisms necessary are handled by the middleware,
either before or during execution of the application.

3.1.2 Application Model

A processis a running instance of aprogram, a sequence of instructions contained in a source or binary file. A process
may besequential, consisting of a single task, orparallel, consisting of multiple tasks. The number of tasks in a
process may vary over the course of its lifetime, and the tasks may communicate and interact with one another through
the use of message passing. Additionally, a task may accessservicesrunning on the same or remote hosts; this is done
using messages exchanged through an RPC protocol, and the computation performed by the service is done on behalf
of the process. Each task in a process may also access one or moredata files, residing either locally or remotely.

All tasks in the process require the same execution environment, and may run on any host in the grid that provides
that environment. Tasks may access services regardless of which execution environment they are implemented in,
since the interaction occurs only through standard, platform-independent communication mechanisms.

The time required to execute a process cannot be predicted. It is difficult enough for a user to obtain an accurate
estimate of their application’s execution time in a fairly controlled environment such as a parallel computer; in a
grid environment, with many different factors affecting application performance, this becomes near impossible. No
scheduling algorithm designed within the context of this model should rely on an application completing within a
specific time frame.

3.2 A Unified Approach to Scheduling

As discussed in Section 2, there are a number of different types of scheduling that have been applied to grid and
parallel computing, and many different approaches have been taken to the problem of doing this scheduling. These
are summarised here.

Computation schedulingrefers to the process of deciding where to launch programs, or parts of programs, on a
collection of hosts. A program is submitted to be run as a job to the scheduler, which then uses information about the
program and the available hosts on the grid to choose an appropriate set of hosts to execute the threads of a program,
and then takes the necessary steps to get it running on those hosts. This process is typically done with the goal of
minimising the execution time of the program.

Data schedulingrefers to the problem of finding an appropriate place on the grid to store data that is to be used
by applications. By placing data files close to the applications that use them, they can complete in a shorter period of
time due to increased speed of access to the files, and a lower load will be placed on the network.

Service schedulingis the process of deciding which host, out of a set which provides a given service, will be used
by an application. Choosing a host which is likely to execute the relevant operations on the service in the shortest
period of time enables application performance to be optimised.

Each of these types of scheduling has similar requirements in terms of the information available and the decisions
that need to be made. Because of these similarities, we propose a model of scheduling that operates on generic
schedulable entities. A scheduling algorithm designed within this model would not be aware that it is dealing with
tasks that are launched or migrated, data files that are copied from one location to another, or which machines are
chosen for a program to access a particular service. It would operate only on the higher-level description of these
entities which abstracts away from the details of what role they actually play in the grid environment.

This high-level view simplifies the problem of making scheduling decisions, and allows us to focus on it purely
from the algorithmic point of view, without having to consider implementation details of the grid, or specific pro-
gramming or infrastructure technologies. Instead, these can be considered separately, with mechanisms constructed to
provide input to the scheduler based on knowledge of the actual components of grid applications and resources, and
take the resulting schedule and translate it into specific actions to be performed on the grid, such as launching tasks or
copying data files.

Scheduling then becomes the conceptually much simpler problem of deciding which entities to place on which
resources at particular points in time. Figure 3 shows an example representation of a system containing several entities
and resources. The type of each of these entities has been deliberately omitted from the diagram, to emphasise its
irrelevance to the scheduler. The information given to the scheduling algorithm consists of the set of entities, the set of
resources, and additional, non-type-specific information about the entities and resources and the relationships between
them. Examples of this might include a connection between two entities corresponding to communicating tasks, a
property of an entity representing the computational and storage costs of placing it on a resource, or a link between an
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Figure 3: A set of entities and resources as viewed by the scheduler

entity and a resource indicating that this is where it currently resides. Theschedule, which is the result of executing
the scheduling algorithm, is a complete set of assignments of entities to resources.

Once the entity-resource assignments have been obtained from the scheduler, a separate component of the system
translates this into a set of actions that implement the decisions. The new schedule is compared with the previous one
to determine what changes have occurred; the actions taken depend on the differences between the two. In the case
of new entities that were not present in the previous schedule because they have been appeared between executions of
the algorithm, new tasks will be launched, data files created, or service access initiated. For entities that have moved
since the previous schedule, tasks will be migrated, or data files moved, or service accesses redirected to a different
host. The implementation details of how these changes are implemented is dependent upon the nature of the grid and
the application. Some features, such as task or data migration, may not be supported in particular environments - this
information would be given to the scheduling algorithm prior to its execution, so that the relevant restrictions can be
placed on the changes that are made to certain entities.

Separating the scheduling of entities and the implementation of the resulting decisions in this manner provides a
clean structure for developing scheduling mechanisms. It allows those developed for one type of grid or execution
environment to be adapted to others, and simplifies the scheduling algorithms by reducing the amount of information
they have to deal with. We see this as a more effective way of performing scheduling than just considering one type
of entity, as all components of an application can be scheduled to suit the grid environment rather than just a subset of
them.

3.3 Graph-based Program Representation

Any running program consisting of multiple entities may be represented as a graph. Each node in the graph represents
a particular entity, whether it is an executing thread, a data file that is being read from or written to, or a service which
is being accessed by a particular thread. The edges in the graph represent the relationships between the entities, such
as communicating tasks or open file handles. This graph will be used as the central data structure that the scheduler
operates on.

Figure 4 shows an example of a parallel program represented as a graph. This program contains four tasks, and
also accesses two data files and a single service. Task 1 takes input from the user in the form of command-line
parameters, and then interacts with tasks 2 and 3, which retrieve information by making calls to Service A and reading
data from File X. Both of them process this information and then pass the result to Task 4, which performs some
further processing and stores its output in File Y.

When scheduling a program, it is desirable to place entities which transfer a lot of data between each other close
together, and entities which perform a lot of processing on powerful machines. For example, suppose Task 3 reads
a large amount of data from File X, and then performs a computationally inexpensive search operation to extract a
single value. It then passes it to Task 4, which, based on this value and the information received from Task 2, performs
a highly intensive processing operation that requires a lot of CPU time. It would make sense to place Task 3 and the
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Figure 4: Graph representation of a program

Host 1: 400Mhz CPU, 120Gb storage

Host 2: 2.6Ghz CPU, 4Gb storage

Figure 5: Process network representation and host assignment

file it reads from on the same host, so that the file can be accessed efficiently from the local disk instead of being
transferred across the network, and to place Task 4 on a much more powerful host, transferring only the single value
that it needs. Additionally, if the operations invoked on Service A required a lot of computation to be performed, but
only returned small amounts of data, then it would be better to access an implementation of the service residing on a
powerful, lightly loaded host, even if an inferior one with a faster network connection was available.

At a more abstract level, such graphs can be represented asprocess networks[64], which consist of a series of
nodesconnected together bycommunication channels. Each node in the network takes input on one or more channels,
and sends output along one or more other channels. Although only unidirectional channels are permitted, cycles are
allowed, so if a pair of nodes needs to send data in both directions then separate input and output channels can be
constructed. In our model of schedulable entities, each is equivalent to a node in a process network. Tasks input and
output data from each other through a message-passing system, from services through an RPC protocol, and from files
through operating system APIs or I/O libraries.

To the scheduler, services and tasks are very similar, because they both incur a computation cost when assigned to
a particular host, whereas data does not. A data file is like a task which consumes no CPU cycles but just sends and
receives messages when read from or written to. Similarly, costs are associated with the links between entities, based
on the amount of data transferred from a file, or sent as messages between tasks or services. These costs, as well as
the capabilities of individual hosts, can be taken into account by the scheduler to make optimal placement decisions.
Mechanisms for determining these costs will be an aspect of our research. In some cases this information may be
available from the static program structure or information supplied by the user, and in others it could be measured
dynamically by observing program behaviour during execution.

Figure 5 shows a process network corresponding to the program, and the hosts that specific nodes have been
assigned to. Tasks 1, 2, and 3 have been placed along with File X onto a host with only moderate computational
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power but a large amount of storage space. Task 4 and the service have both been placed on a more powerful host;
the resulting output file resides there as well. Given these two example hosts, this allocation satisfies the requirements
mentioned above in regards to efficient access to data files, and placement of computationally expensive tasks on
powerful processors. Of course, there are many situations in which these goals may conflict, such as when expensive
computation needs to be performed on large amounts of data, and hosts which satisfy both requirements are not
available. In this case, trade-offs have to be made, and the scheduling algorithm must select the choice that it believes
will lead to the best application performance.

Process networks provide a useful model for our experiments, and a significant amount of past work relating
to these has been done which can be leveraged for our purposes. In particular, we will utilise PAGIS [124], an
implementation of process networks designed for grid computing environments. PAGIS provides an architecture for
representing and executing process networks, and enables distribution of the networks across multiple grid resources.
The current implementation supports tasks written as Java classes, and allows them to be launched on and migrated to
other nodes running the PAGIS environment, which integrates with the Globus toolkit. A graphical environment can
be used to construct process networks and monitor their execution.

3.4 Aim

In this project, we propose to investigate the issues described above, and look at a range of different scheduling
algorithms for placing the tasks of a parallel program, the data files they use and the services they access on grid
resources. Our focus is on the conceptual level of scheduling, with the aim that the results of our research can be
applied to a range of different parallel, distributed systems. We will investigate the algorithms within the context of
multiple implementations, so that they can be tested in a range of different configurations.

3.5 Method

The research will be split into multiple phases, starting off with consideration of a specific grid execution environment,
and then expanding out to a wider range of execution models and grid systems. The phases will be as follows:

1. Investigation of scheduling algorithms within the PAGIS application environment.

The existing, simplified node placement strategies used in PAGIS will be extended with more advanced schedul-
ing algorithms. These will take into account information about the process network and the connections between
each of the nodes, in order to create appropriate schedules as described above.

Because PAGIS provides a relatively controllable execution environment, extra functionality can be added to
the execution system to monitor performance in different configurations. This will allow for experiments to be
performed on a set of machines, and data collected to measure the performance of different scheduling strategies
with a range of programs.

The goal behind initially working with PAGIS is to get hands-on experience implementing scheduling in a real
system. The work done in this part of the project will provide a useful basis for looking at scheduling in the
more general case and application of the concepts to other systems later in the project.

2. Data scheduling

Once the scheduling architecture from the previous step has been implemented, it will be extended to support
the scheduling of file placement. This will be achieved by adding an additional type of process network node
to PAGIS which supports reading or writing of data in a file. Input and output channels will be used to perform
sequential reading or writing, so that it can be used within the existing architecture in the same manner as a node
which produces or receives data. The main difference with file nodes is that when the node itself is moved to a
different host, the data file goes with it. The mechanisms used for specifying a file will include support for files
on remote machines running PAGIS, such that a file node will start on the host that contains the file, which may
be different from the host that initially contains all the other nodes. Migration can be prevented for file nodes if
the file is required to stay at its original location.

3. Service scheduling

In a similar manner to the implementation of file access, an additional type of process network node will be
added to support access to grid services. When one of these nodes is added to a process network, the user will
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have to specify information about the service interface to be accessed, the operation to be performed, and what
input channels tie to what parameters. The node will have a single output channel representing the return value
of the operation. However, the specific host providing the service will not be specified - instead, information
must be provided which the scheduler can use to find a list of hosts providing the service, and then decide which
host to use in the same manner as it decides which host to execute a task or transfer a file to. This service access
will thus be performed in the same way as that of tasks and files, but the implementation mechanisms will be
specific to the use of services. As with the previous two phases, experiments will be performed to measure the
performance of various scheduling algorithms in this situation.

4. Investigation of scheduling in simulation environment

An existing grid simulation environment will be used to test the scheduling algorithms from the previous stages
on a larger scale. This will allow for testing these algorithms with larger numbers of processors than physically
available, by virtue of being able to set up a simulated grid. This stage will include an investigation of existing
simulators that are suitable for use.

A range of different configurations, from large to small, will be tested, to see how well each of the algorithms
scales.

5. Application of concepts to other middleware

By this point we will have developed a solid understanding of the applicability of metascheduling to different
types of entities, namely tasks, files and services. We will also have investigated a number of different scheduling
algorithms which can be used for this purpose, and ways of abstracting the different types of schedulable entities
away from the actual scheduling process. The next step is to apply these concepts to other types of parallel
programming systems in grid environments. We will consider a number of different candidate systems, and
determine which are the most interesting from the point of view of applying these concepts.

The previously-developed scheduler will be modified so that it acts as a component which can be easily in-
terfaced with other types of systems. This interface will then be used to integrate the scheduler with several
different types of grid middleware. Experiments will be carried out in a range of different configurations to see
how well the algorithms works in each system. This will be compared to the simulated results to determine what
issues arise that in practice. Where significant performance differences are observed, these will be investigated
and, as far as possible, corrected for.

3.6 Milestones

October 2004

• Research proposal completed

November 2004

• Summary and evaluation of PAGIS for purpose of this project

• Revision/extension of PAGIS to provide a foundation for future work

March 2005

• Basic scheduling architecture implemented in PAGIS

• Cost mechanism for process network nodes and channels implemented

• PAGIS extended to support file and service nodes

September 2005

• Several centralised scheduling algorithms implemented in PAGIS, and evaluated on a small test grid

• Existing grid simulation environments investigated, and one selected for use
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• Centralised scheduling algorithms implemented and evaluated in simulator

March 2006

• Distributed scheduling algorithms implemented and evaluated in PAGIS

• Distributed scheduling algorithms implemented and evaluated in simulator

• Existing middleware chosen for application of scheduling concepts

• Scheduler from PAGIS made into a re-usable component

September 2006

• Scheduler interfaced with existing middleware

• Scheduling algorithms investigated in context of existing middleware

• Results from middleware compared to those from simulator

March 2007

• Thesis completed
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