
A Distributed Virtual Machine for Parallel Graph Reduction

Peter M. Kelly, Paul D. Coddington, and Andrew L. Wendelborn

School of Computer Science

University of Adelaide

South Australia 5005, Australia

{pmk,paulc,andrew}@cs.adelaide.edu.au

Abstract

We present the architecture of nreduce, a distributed vir-

tual machine which uses parallel graph reduction to run

programs across a set of computers. It executes code written

in a simple functional language which supports lazy evalu-

ation and automatic parallelisation. The execution engine

abstracts away details of parallelism and distribution, and

uses JIT compilation to produce efficient code.

This work is part of a broader project to provide a pro-

gramming environment for developing distributed applica-

tions which hides low-level details from the application de-

veloper. The language we have designed plays the role of an

intermediate form into which existing functional languages

can be transformed. The runtime system demonstrates how

distributed execution can be implemented directly within a

virtual machine, instead of a separate piece of middleware

that coordinates the execution of external programs.

1 Introduction

Distributed computing systems designed for executing a

large parallel computation among a collection of different

computers have become common in recent years. They per-

mit computationally demanding problems to be solved rel-

atively quickly, often reducing the amount of time required

from years to weeks. The participating machines may ei-

ther be owned by regular users volunteering their idle CPU

time for a good cause, or owned by a single organisation

that uses idle workstations to do its compute intensive pro-

cessing. This is a cheap alternative to a cluster, since it uses

resources that are already there but are under-utilized when

users are not physically present. The same approach can

also be used on shared memory systems to distribute work

among processors.

Most such systems hand out independent jobs to differ-

ent machines, possibly with some level of coordination used

to manage the dependencies between different jobs. How-

ever, many of the opportunities for parallelism can actually

reside within a job. The programs are run directly on top

of the operating system, or within a virtual machine such

as Java or .NET. These do not permit different threads to

be easily distributed to remote machines, at least not using

the mechanisms that the distributed computing middleware

provides for distributing jobs. Finer grained control over

parallelism can be achieved using message passing libraries

such as MPI, but at the cost of dealing with task interaction

and data distribution manually, which is more challenging

and error-prone.

We have taken an alternative approach to parallel pro-

gramming for such environments by developing a program-

ming language and runtime environment specifically de-

signed to integrate scheduling with the execution of the ac-

tual program. Rather than permitting scheduling only at the

level of coarse-grained, independent jobs, our system sup-

ports complex dependencies and finer grained distribution

of work, right down to the level of individual function calls.

This opens opportunities for taking advantage of additional

parallelism, while providing us with the ability to experi-

ment with a range of different granularities in a way that is

not normally provided by middleware.

Our system is based on a combination of ideas from

both the parallel functional programming and distributed

computing research communities. It is a virtual machine

that executes applications written according to the func-

tional programming model, and automatically extracts par-

allelism and manages the distribution of work between dif-

ferent computers. The side effect free nature of functional

programming facilitates automatic parallelisation and pro-

vides us with an effective means of hiding low-level dis-

tribution and task interaction details from the programmer.

The research we are conducting is intended to bridge the

gap between the largely separate worlds of coarse grained

job scheduling and fine grained parallel programming and

investigate the benefits that can occur when ideas from these

areas are integrated.

1



2 Related work

Condor [21], XGrid [7], and Sun Grid Engine [5] provide

the ability to distribute jobs among a collection of cluster

nodes or user workstations located on a local or wide-area

network. Each job is a separate program instance, which the

middleware runs, collects the output, and makes the results

available to the user. Other projects such as OptimalGrid

[11] and Alchemi [17] provide similar facilities for Java and

.NET-based programs, dividing the tasks into different ob-

jects instead of executable programs. In some cases it is

possible to specify dependencies between jobs [8, 18], in a

programming style often referred to dataflow or workflow.

The specification of dependencies between jobs is essen-

tially a type of high-level programming model where con-

structs are provided for specifying tasks and dependencies.

This model is similar to graph reduction, which has been

used at a much finer grained level to implement many func-

tional programming languages. Two such implementations,

the (v,G)-machine [3], and GUM [22], have inspired our

own implementation, particularly the latter which has re-

cently been extended to utilise machines in different geo-

graphical locations [23]. A detailed study of load balancing

approaches for distributed memory graph reduction is given

in [16], and other work has shown success in implementing

the concept on shared memory systems [6].

While the (v,G)-machine runs only on shared memory

systems, both our system and GUM support distributed

memory execution, where the heap is partitioned between

different computers. We utilise a similar model of paral-

lel execution to that of GUM, the main difference being the

way in which communication is handled. GUM does not

implement inter-node communication itself but instead uses

either PVM [4] or MPI [19], both of which rely on a central

point of control and don’t interact well with sockets. We in-

stead use our own proprietary message passing layer based

on a peer-to-peer model, described in Section 4.2. In our

communications model, there is no “master” node that can

bring the whole system down if it fails. It also permits our

system to be deployed as a stand-alone package, which does

not require the installation of extra libraries which are not

normally present in workstation environments.

While it is possible to write message passing programs

directly using PVM or MPI, these are both very low-level

programming models that require a lot of expertise. Higher-

level languages that abstract away complex details have the

potential to make parallel programming easier. As with

other distributed memory models, our approach is also ap-

plicable to shared memory systems such as multi-core pro-

cessors.

Our virtual machine and intermediate language are part

of a broader project to implement a distributed, parallel ver-

sion of XSLT [12]. The use of graph reduction came about

as an evolution of earlier work on compiling XSLT into

dataflow graphs [13], while our stream-based implementa-

tion of network connections is intended for use as an under-

lying mechanism for accessing web services [14].

3 Graph reduction

The dataflow model used by job scheduling systems uses

directed acyclic graphs (DAGs), where each vertex repre-

sents a job, and the edges indicate dependencies between

them. A job can only begin execution once all of the other

jobs it depends on have completed, and the output files pro-

duced by those jobs are used as the subsequent input data.

Graph reduction also represents the program as a graph,

but in a different manner. Each vertex represents either a

function reference, a call to a function, or a computed value.

A “job” in the DAG model corresponds to a call to a func-

tion with one or more expressions, where each expression

may be any of the three types of vertices. Graph reduction

is a popular implementation technique for functional lan-

guages because of its support for lazy evaluation, and the

existence of techniques for compiling such programs into

efficient sequential code.

We use a modified version of graph reduction based on

the (v,G)-machine [3], which uses a collection of frames,

organised in a heap. These are similar in nature to the

stack frames used when executing imperative languages,

except that they are organised as a graph, rather than a stack.

Within an individual frame, the instructions corresponding

to the relevant code are executed sequentially. Parallelism is

achieved by detecting cases where the results of more than

one function call are needed by an expression, and sparking

frames for each of the calls, making them candidates for ex-

ecution. Sparked frames can then be distributed to worker

machines in the same way that jobs are in a typical task

farming system.

The graph is stored in a distributed manner across each of

the machines, and data values are exchanged between ma-

chines as necessary using request/response messages. Dis-

tributed garbage collection is performed at regular intervals

to clean up parts of the graph that are no longer referenced,

after having been consumed by functions that have finished

executing.

Our work thus takes the concept of DAG-based schedul-

ing and approaches the problem from the perspective of im-

plementing a functional programming language. The unit

of execution is much more fine grained; instead of jobs we

deal with function calls, and the graph maintained at run-

time includes the actual output data that is computed and

passed as input to subsequent operations.

2



Process A

A2192.168.0.2

Node 2

Task

A1

Task

B1

192.168.0.3

Node 3 Task

B2

Node 1

192.168.0.1

Process B

Task

Figure 1. A set of nodes with running pro-

cesses

4 Distribution model

4.1 Nodes and tasks

A separate instance of the virtual machine runs on each

computer, and is referred to as a node, each of which main-

tains connections to several others. The organisation is

based on a peer-to-peer model, avoiding reliance on a cen-

tral point of control. We use the Chord protocol [20], since

the number of connections each node has open is logarith-

mic in the size of the network, and joins and departures are

handled robustly. Nodes can join or leave the system at any

time, based on user control or automatic launching of the

virtual machine on participating hosts.

A program that is running on a set of nreduce nodes is

referred to as a process. Each process consists of a set of

tasks, each residing on a different node. In general, only

a subset of all available nodes will take part in any given

process. A node may be running tasks from several different

processes. An example deployment is shown in Figure 1,

containing three nodes with two running processes, each of

which has two tasks. The black edges in the figure represent

socket connections between the nodes. On multi-processor

machines, parallelism can also be obtained within a single

VM instance since each task is run in a separate thread.

A user launches a process by using a command-line

client, which takes arguments specifying the name of the

source file, the address of an existing node, and the number

of machines to be used for execution. The client program

first compiles the source code, reporting any errors it finds

to the user. If compilation succeeds, it connects to the speci-

fied node and performs a search on the network for available

hosts that can be used for execution (details of which are

outside the scope of this paper). Once the node set has been

determined, the bytecode is sent to each node; the nodes

then perform just-in-time (JIT) compilation of the bytecode

and begin execution of the task.

4.2 Messaging

Communication between tasks on different nodes occurs

using message passing. While PVM and MPI were orig-

inally considered for use, neither met all of our require-

ments. For reliability purposes we wanted a peer-to-peer

mechanism that did not rely on a central point of control,

so that no failure of an individual node or group of nodes

would bring the whole system down. To support distributed

heap management, tasks also need a mechanism by which

they can be interrupted whenever a message arrives, instead

of paying the cost of explicitly polling for message avail-

ability while executing compute intensive code. No mes-

sage passing library we are aware of provides these features

- particularly the latter, since it needs tight integration with

the JIT compiler to ensure interruptions only occur at safe

points. Using an integrated messaging layer also makes de-

ployment easier, as it is simpler to install a single statically-

linked executable on a set of desktop workstations than to

rely on a correctly configured MPI installation already be-

ing present.

Each task runs within a separate thread, and has an end-

point object associated with it that is used to send and

receive messages. An endpoint is identified by a tuple

{ip, port, localid}, where ip and port refer to the IP address

and port number used by the node, and localid is a locally

unique identifier assigned to the endpoint. Endpoints are

also associated with other threads that run within the VM,

such as the manager thread used to coordinate process cre-

ation. Each message has a header which records its source

and destination, a tag indicating the type of message, and a

variable-sized payload. A task only receives notification of

message arrival once the entire message has been received

by the node.

Each node runs a dedicated I/O thread to handle commu-

nications. It maintains socket connections to other nodes,

and uses a select() loop to wait for data to be received over

the network, or in the case where there are outgoing mes-

sages waiting to be sent, for sockets to become writable.

When data is received over a connection, it adds it to a

read buffer, and as soon as that buffer is found to contain

a complete message, it delivers the message to the appro-

priate endpoint. Tasks get notified of message arrival by

the I/O thread sending a signal to the task’s thread, which

causes it to jump out into a message handling function. The

other threads explicitly issue a receive operation and block

3



while they are waiting for the next message.

The messaging model is send-and-forget. When one

endpoint wants to send a message to another, it invokes a

send operation, specifying the destination endpoint id, the

tag, and the binary data to be sent. This is handed to the

I/O thread which places it in an outgoing queue for the ap-

propriate connection and handles the actual data transfer.

From this point, the sending endpoint gets no notification

of whether or not the message was successfully received. A

linking mechanism similar to that of Erlang [1] permits a

thread to be notified when one of its peers fails.

5 Program execution model

5.1 Input language

Programs run by nreduce are written in a language we

refer to as extended lambda calculus (ELC). This is a very

simple programming language based on the well-known

lambda calculus model shared by other functional lan-

guages such as Haskell [10]. Basic features such as arith-

metic expressions, conditional tests, and list manipulation

functions are supported on top of the underlying model, all

of which follow standard functional semantics. Since our

research is concerned with the implementation of the pro-

gramming model, we will not go into details of the syntax or

other specifics here, with the exception of some additional

language features described in Section 6. Our implementa-

tion techniques can be applied to other functional languages

that share the same basic model.

While it is possible to write code directly in ELC, it is

primarily intended as an intermediate form into which other

languages such as XSLT can be compiled. However, such

compilation and usage is outside the scope of this paper; we

instead focus here on the approach used for executing and

compiling ELC programs.

5.2 Frame management

Within a process, each task is responsible for executing

some portion of the work available to be done, and stor-

ing part of the graph. Each task maintains its own heap,

which contains a series of cells, which are the vertices of

the graph. References between cells in the same heap are

via a standard pointer to the memory address of the other

cell, while references to cells in other heaps go through a

separate indirection layer,

The basic unit of execution is a frame, which represents

a call to a function with a particular set of actual param-

eters. The creation of a frame is a separate action to its

invocation. A frame that has been created but has not yet

started executing corresponds to a “suspended evaluation”

or “thunk” common in many functional languages. It is a

deref

Sparked

Remote

reference

Running

Value

New frame

Blocked
eval

return

resolve

spark eval

deref

deref

Garbage

schedule

unblock

block

Figure 2. Life cycle of a frame

value that can be passed around in memory as arguments

to other functions, or returned as the result of a function.

When a frame begins execution, the virtual machine exe-

cutes the instructions at the code address associated with

the frame. In some cases execution will begin immediately

after a frame has been created; in others it may be created

and either evaluated later, or possibly even never evaluated

if it turns out its result is not needed.

The management and distribution of frames is based on

the approach of [22]. Each task maintains three sets of

frames: sparked, runnable, and blocked. Sparked frames

are those that the program has determined it will definitely

need to execute at some point in the future, but whose re-

sults are not yet needed. Runnable frames are those which

have begun execution and have work that they need to do

now. Whenever the runnable set is non-empty, the processor

is always executing one of them. Blocked frames are those

that have begun execution, but are waiting either for an-

other frame to return, or for requested data to become avail-

able from a network connection. The runnable and blocked

sets are analogous to those that an operating system kernel

maintains for processes/threads.

The state transitions that a frame may go through are

shown in Figure 2. When a frame is initially created, it is

not in any of the sets. If it is sparked, it will be put into the

sparked set, and at some later point in time will be executed

locally by the task, or sent to a remote task for execution.

When another frame needs the result of the frame, it will

begin evaluation of it, and place it in the runnable set. The

frame may be blocked and unblocked several times during

its execution, if it calls other frames or makes requests over

the network. Finally it will return, and the heap cell associ-

ated with it will be updated with the result value.

If a frame is assigned to another machine for execution,

4



then the cell in the local heap which referred to that frame

becomes a remote reference. If the value of this reference is

needed by another running frame, a request will be sent to

the remote machine for the value. The remote machine will

reply with the value once the frame has finished executing,

and the cell in the requesting task’s heap will be changed to

hold the value.

If a frame is not in the sparked, runnable, or blocked sets,

it may become dereferenced. This means that there are no

longer any references to it from other frames or cells and

it is considered garbage. This is not possible while it is in

one of the three sets, because for it to have been put in those

sets there must be at least one other place from which it

is referenced, which is waiting on the result of the frame.

When it does become dereferenced, either before or after it

has been executed, it will become a candidate for garbage

collection, and will be deleted when the next collection is

performed.

5.3 Work distribution

When a process starts, it consists of a set of idle tasks,

each running on a different processor. The number of tasks

that takes part in a process is specified by the user when

the process is created, and each accepts responsibility for

executing some portion of the program. All tasks except

one start out with no runnable frames; the lowest-numbered

task initially contains a single frame correspdonding to a

call to the main function of the program.

As execution proceeds, additional frames will be cre-

ated. Those whose values are needed immediately will be

evaluated by the local task, while others that are found to

be needed in the future are sparked. This sparking occurs

based on strictness annotations in the code, derived during

the compilation process described in Section 5.4.

To cater for nodes with different processor speeds and

the difficulty of predicting ahead of time how long a func-

tion call or expression will take to evaluate, we use a dy-

namic load distribution mechanism. An idle task (one with

no running frames) sends out a work request to a randomly

chosen task. If that task has frames available in its sparked

set, it migrates some of them to the requester; otherwise,

the work request is forwarded to another task. A time-to-

live field associated with the request is decremented each

time so that the request will eventually disappear. If an idle

task does not receive a responses after a certain time period,

it sends out another request.

Upon receipt of one or more sparked frames, a task will

place them in its running set and begin executing the first

one. The relevant heap cells on the originating task will

become remote references that point to the frames at their

new location. If an attempt is made to evaluate one of these

references, a request will be sent to the task running the

frame, and the response will be sent back once the frame

has completed. Such a request causes only the frame that

made it to block; other frames which do not depend on the

requested value may continue execution; this is effectively

a form of latency hiding.

5.4 Compilation

ELC programs are compiled in a similar manner to that

described in [9], using the following steps:

1. The source file and imported module files are parsed

into a syntax tree.

2. Variable references are checked, and resolved to point

to the appropriate identifiers.

3. Lambda lifting replaces all lambda abstractions with

supercombinators (top-level functions).

4. Optimisation is done by performing a series of trans-

formations on the syntax tree. These include in-lining

of simple function calls, and modifying certain con-

structs to reduce the number of frames that must be

allocated due to lazy evaluation.

5. Strictness analysis is performed to determine which

expressions each function definitely needs to evaluate,

and can thus be sparked when the function is called.

This is only done when it is certain their results will

be needed, to avoid sparks causing unnecessary work

being done, which could possibly lead to infinite loops.

6. The resulting modified/annotated syntax tree is com-

piled into platform-independent bytecode.

7. The bytecode is compiled into native code for the tar-

get machine. The code generator currently produces

x86 code.

Step 7 is separate from the main compilation process, and

is optional. Two variants of the execution environment are

provided: an interpreter, which operates directly on the

bytecode, and a native code engine, which runs the com-

piled code. When a client launches a process, it submits the

bytecode to each node, which can then choose to either use

the interpreter or JIT engine.

5.5 Execution

The interpreter implements an abstract machine concep-

tually similar to the G-machine [2]. The instruction set is

specifically tailored toward graph reduction, and includes

operations for creating and evaluating frames, executing

built-in functions, as well as the usual arithmetic and control

instructions. In addition to executing the program’s byte-

code instructions, the interpreter interacts with other parts

of the runtime environment for actions such as handling

5



messages from other tasks and performing garbage collec-

tion.

Native code execution is based on the same abstract ma-

chine concept. Before execution begins, the code genera-

tor performs JIT compilation to translate the bytecode in-

structions into machine code. This avoids the overhead

of the runtime tests of the interpreter such as the top-level

switch statement, as well as other operations that can be ei-

ther skipped or done more efficiently in the generated code.

Also, where the interpreter checks for exceptional situations

like a message becoming available on each instruction, the

native code engine relies on signal handlers to deal with

these, avoiding the cost of constantly checking for these

cases. The code generator is designed in such a way that

it can call back to the interpreter for certain instructions,

while executing others directly. This simplifies additions or

changes to the instruction set and aids debugging.

6 Additional capabilities

The main concepts of ELC are based on the well-known

lambda calculus model used by other functional languages,

so will not be discussed in detail here. However, there are

a few design choices we have made which differ in some

respects to other languages and warrant further discussion.

6.1 Automatic parallelisation

Parallel functional languages often require explicit anno-

tations from the programmer to indicate which expressions

should be executed in parallel, such as Haskell’s par com-

binator [22]. This is due to the overhead associated with

sparking expressions, which can be minimised by only do-

ing so where specifically requested by the programmer. We

have elected to instead add these annotations automatically

during strictness analysis, to relieve the programmer of this

responsibility, and cater for high-level languages which do

not include support for such annotations. To compensate for

the fact that the compiler adds more annotations than would

usually be specified by a programmer, we only spark ex-

pressions involving function calls, and have optimised our

implementation to minimise the overhead of sparks when

they do occur.

If a frame is already on the heap, then all our imple-

mentation needs to do to spark it is to change its state field

to “sparked”. This cost is small, because it only requires

the cell type to be checked and a single field to be up-

dated. Rather than maintaining the set of sparked frames

in a data structure such as a linked list, any time the sparked

set needs to be accessed, a heap traversal is performed, and

the state field of each frame is examined. While this traver-

sal is more expensive than looking at a small linked list of

frames, the overall impact is less. This is because modify-

ing the sparked set happens regularly, and accessing it only

happens on the relatively infrequent occasion that the task

receives a work request from another machine.

6.2 Data representation

In order to keep the programming model simple, ELC

only supports three data types: numbers, cons cells, and the

special value nil. Data structures such as lists can be built

up of multiple cons cells in the standard way. Strings are

simply lists of numbers, each of which is a character code.

Binary data read from files and network connections is also

represented in the same manner.

While strings and binary data appear to the program as

lists, they are actually stored internally as arrays [15]. This

permits contiguous blocks of memory to be used for the

contents, avoiding the overheads of large linked lists, and

enabling data read from a socket to be directly copied into

the array. The built-in list operations such as head, tail, and

length operate on arrays and lists in such a manner to hide

the underlying storage mechanism.

6.3 Streams

When an ELC program creates a network connection, a

list abstraction is created for input and output. The data read

from the connection is exposed to the program as a list, and

lazy evaluation is used to control reading of the data. As the

program traverses the list, more data is read from the con-

nection. When a frame attempts to evaluate part of the list

that has not yet been read, it will block until the data is re-

ceived from the other side. When the data arrives, the frame

will be woken up and given the requested list elements. If

only an initial portion of the list is ever accessed by the pro-

gram, later parts which become dereferenced will be deleted

by the garbage collector, which will cause the connection to

be closed.

Output works by invoking a user supplied function for

each new connection, and interpreting the result of that

function as a list of bytes to be written to the connection.

The function may either return a string value directly, in

which case the data would be written immediately, or it can

use lazy evaluation to produce a longer data stream. In the

latter case, the runtime environment will traverse the re-

sulting list and write out the data as it becomes available.

If the operating system’s buffer becomes full because the

other side has not yet read the data, the traversal will block.

When the buffer contains some available space, the socket

will become writable, and the traversal will unblock and

cause more data to be written.

Because this approach to I/O utilises the runnable and

blocked frame sets, it enables ELC programs to take ad-

6



vantage of the parallel execution semantics even on a single

processor. Multiple expressions involving different network

connections can be active at the same time, and when one or

more of them are blocked while waiting for data, the others

can continue. This is particularly useful for programs which

interact with multiple external network services, or act as a

service themselves and support multiple client connections.

7 Current status

A prototype implementation of the system has been un-

der development for close to 18 months, and consists of

around 22,000 lines of C code. It runs on both Linux and

Mac OS X. The underlying operating system is completely

hidden from ELC programs, and nodes on different plat-

forms can cooperate together in the execution of a process.

We have tested parallel execution on a cluster of 60 nodes,

and developed a number of sample applications such as a

web server, Mandelbrot generator, and XML parser, to ver-

ify that the VM is able to run reliably and produce correct

results.

Extensive testing has also been done on our implementa-

tion of the Chord protocol. Simulations of up to 256 nodes

have been carried out using multiple threads on a single ma-

chine, as well as real deployments on the test cluster. In both

cases, the networking infrastructure is able to tolerate mul-

tiple simultaneous node failures and repair itself quickly.

Now that our implementation is working reliably, we are

addressing the issues of latency that typically affect com-

munication intensive programs. These efforts include im-

proving dynamic scheduling, and minimising the number of

messages required for transfer of graph segments. Although

work such as [16] and [22] has looked at these issues, fur-

ther research is needed in the context of peer-to-peer envi-

ronments. Additional optimisations in this area are needed

to make our system fast enough for real-world usage.

8 Future work

Fault tolerance is not currently provided within the con-

text of a process. A node failure will cause all processes

with tasks on that node to be terminated, since parts of the

heap stored on that node may be needed. The side effect

free nature of our programming model permits the possibil-

ity of recovering lost data through re-computation, provided

that the necessary information can be obtained from other

nodes. This would be an interesting extension of our work,

and would further demonstrate ways in which a side effect

free language can be beneficial.

For user workstations, background utilisation of a run-

ning VM can be problematic. Cycle stealing systems gen-

erally provide a mechanism to suspend or migrate computa-

tion elsewhere if a user becomes active at the machine. Ide-

ally, our system could support such a mechanism through

integration with a screen saver-like mechanism to detect pe-

riods of inactivity.

Aside from this additional functionality, the most im-

portant work remaining relates to performance improve-

ment. This includes work distribution mechanisms, dis-

tributed garbage collection, and code optimisation. While

our focus has mostly been on new research ideas, much ex-

isting knowledge on compiler and virtual machine technol-

ogy exists that could be applied to our system.

9 Conclusion

Our virtual machine abstracts away low-level details of

parallelism and distribution of functional programs, remov-

ing the need for the programmer to explicitly deal with

these issues. Additionally, the stream-based model of net-

work I/O enables many network connections to be handled

concurrently by a program in a transparent manner. These

features provide a simple, high-level programming model

that allows programs to easily benefit from concurrency

and parallelism, with less complexity than many traditional

programming environments. Numerous optimisations have

been made to to the compiler and runtime system with the

goal of improving efficiency.

Evaluation and results have not been provided in this pa-

per due to space restrictions and the need for further optimi-

sations to be made to the VM before good performance can

be obtained. Our intention here has been to present the fea-

tures and architecture of our system and to give an overview

of the implementation. Future work will lead to a detailed

evaluation of system performance and address issues relat-

ing to fault tolerance and the impact of network latency.

We believe that distributed computing systems based on

coarse grained jobs can benefit from increased granularity

and the use of a functional programming model. Our work

combines these two ideas in an attempt to explore how prac-

tical finer grained work distribution is in various scenarios

such as peer-to-peer networks of workstations.

References

[1] J. Armstrong. The development of Erlang. In ICFP

’97: Proceedings of the second ACM SIGPLAN in-

ternational conference on Functional programming,

pages 196–203, New York, NY, USA, 1997. ACM

Press.

[2] L. Augustsson. A compiler for lazy ML. In LFP ’84:

Proceedings of the 1984 ACM Symposium on LISP

and functional programming, pages 218–227, New

York, NY, USA, 1984. ACM Press.

7



[3] L. Augustsson and T. Johnsson. Parallel graph reduc-

tion with the (v , g)-machine. In FPCA ’89: Proceed-

ings of the fourth international conference on Func-

tional programming languages and computer archi-

tecture, pages 202–213, New York, NY, USA, 1989.

ACM Press.

[4] A. Beguelin, J. J. Dongarra, A. Geist, S. Otto, and

J. Walpole. PVM: Experiences, current status and fu-

ture direction. In Proceedings of Supercomputing ’93,

pages 765–766, Portland, Oregon, November 1993.

[5] W. Gentzsch. Sun grid engine: Towards creating a

compute power grid. In CCGRID ’01: Proceedings

of the 1st International Symposium on Cluster Com-

puting and the Grid, page 35, Washington, DC, USA,

2001. IEEE Computer Society.

[6] T. Harris, S. Marlow, and S. Peyton Jones. Haskell

on a shared-memory multiprocessor. In Haskell ’05:

Proceedings of the 2005 ACM SIGPLAN workshop on

Haskell, pages 49–61, New York, NY, USA, 2005.

ACM Press.

[7] B. Hughes. Building computational grids with Ap-

ple’s Xgrid middleware. In ACSW Frontiers ’06: Pro-

ceedings of the 2006 Australasian workshops on Grid

computing and e-research, pages 47–54, Darlinghurst,

Australia, Australia, 2006. Australian Computer Soci-

ety, Inc.

[8] C. Jin, Z. Zhang, L. Stein, and R. Buyya. A dataflow

system for unreliable computing environments. Tech-

nical Report GRIDS-TR-2006-18, Grid Computing

and Distributed Systems Laboratory, University of

Melbourne, Australia, November 2006.

[9] S. L. Peyton Jones. The Implementation of Functional

Programming Languages. Prentice Hall, 1987.

[10] Simon Peyton Jones, editor. Haskell 98 Language and

Libraries: The Revised Report. Cambridge University

Press, January 2003.

[11] J. H. Kaufman, T. J. Lehman, G. Deen, and J. Thomas.

OptimalGrid – autonomic computing on the grid. IBM

developerWorks, June 2003.

[12] P. M. Kelly, P. D. Coddington, and A. L. Wendelborn.

Distributed, parallel web service orchestration using

XSLT. In 1st IEEE International Conference on e-

Science and Grid Computing, Melbourne, Australia,

December 2005.

[13] P. M. Kelly, P. D. Coddington, and A. L. Wendel-

born. Compilation of XSLT into dataflow graphs for

web service composition. In 6th IEEE International

Symposium on Cluster Computing and the Grid (CC-

Grid06), Singapore, May 2006.

[14] P. M. Kelly, P. D. Coddington, and A. L. Wendelborn.

A simplified approach to web service development. In

4th Australasian Symposium on Grid Computing and

e-Research (AusGrid 2006), Hobart, Australia, Jan-

uary 2006.

[15] P. M. Kelly, P. D. Coddington, and A. L. Wendel-

born. Efficient list representation for lazy functional

languages. Technical report, DHPC Group, Computer

Science Department, Adelaide University, 2007. To

Appear.

[16] H-W. Loidl. Load balancing in a parallel graph re-

ducer. Trends in Functional Programming, 3:63–74,

2002.

[17] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal.

Peer-to-peer grid computing and a .NET-based al-

chemi framework. In High Performance Computing:

Paradigm and Infrastructure. Wiley Press, Fall 2004.

[18] G. Malewicz, I. Foster, A. L. Rosenberg, and

M. Wilde. A tool for prioritizing DAGMan jobs and

its evaluation. Journal of Grid Computing, 5(2):197–

212, June 2007.

[19] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and

J. Dongarra. MPI: The Complete Reference. MIT

Press, 1995.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer

lookup service for Internet applications. In ACM SIG-

COMM 2001, pages 149–160, San Deigo, CA, August

2001.

[21] D. Thain, T. Tannenbaum, and M. Livny. Distributed

computing in practice: The Condor experience. Con-

currency and Computation: Practice and Experience,

2004.

[22] P. W. Trinder, K. Hammond, Jr. J. S. Mattson, A. S.

Partridge, and S. L. Peyton Jones. GUM: a portable

parallel implementation of Haskell. In PLDI ’96: Pro-

ceedings of the ACM SIGPLAN 1996 conference on

Programming language design and implementation,

pages 79–88, New York, NY, USA, 1996. ACM Press.

[23] A. D. Al Zain, P. W. Trinder, G.J.Michaelson, and H-

W. Loidl. Managing heterogeneity in a grid parallel

Haskell. Scalable Computing: Practice and Experi-

ence, 7(3), September 2006.

8


