
Distributed, parallel web service orchestration using XSLT

Peter M. Kelly, Paul D. Coddington, and Andrew L. Wendelborn
School of Computer Science

University of Adelaide
South Australia 5005, Australia

{pmk,paulc,andrew}@cs.adelaide.edu.au

2nd October 2005

Abstract

GridXSLT is an implementation of the XSLT program-
ming language designed for distributed web service or-
chestration. Based on the functional semantics of the lan-
guage, it compiles programs into dataflow graphs which
can be efficiently executed across a collection of machines
in a cluster or grid environment. Calls to web services
can be made using the standard function call semantics
provided by the language, and occur in parallel using the
dataflow model of computation. The programmer is not
required to explicitly specify the parallelism, as the de-
tails of how programs are scheduled and executed in a
distributed environment are abstracted away by the run-
time engine. XSLT provides a higher level programming
model than many other approaches to web services com-
position; we explore its use here as a means of easing the
task of orchestrating the interactions between services. In
addition to the normal XSLT syntax, our system also sup-
ports programs written in XSLiTe, an alternative syntax
we have developed which uses more concise representa-
tions of language constructs, increasing the ease of devel-
opment, and bringing code readability closer to that of tra-
ditional programming languages. Our goal is to ease the
construction of applications based on web services com-
position, such as those used in eScience and other fields
in which service oriented architectures are prominent.

1 Introduction

The concept of grid computing has received considerable
attention in recent years as an approach for harnessing
large amounts of computing resources distributed over
a wide geographical area, and linking together disparate
services and data sources to enable a new class of appli-
cations. A wide range of software packages have been
written to enable the development of applications that run
in such an environment, and have been deployed in re-
search, scientific, and commercial environments.

One of the most prominent approaches to grid comput-
ing today is that of Service Oriented Architectures (SOA),
in which a set of hosts on a network each provide one or
more services. Each service consists of a set of opera-
tions that can be invoked by clients by submitting a re-
quest to the server containing the name of the service, the
name of the operation, and the values for each of the re-
quired parameters. Upon completion of the call, the server
replies with the result of the operation. No platform-
specific knowledge is required by either side, as long as
they communicate using an agreed protocol. Many differ-
ent standards have been proposed over the years that fit
this model; today, the most prominent example is the set
of specifications for web services produced by the stan-
dards bodies such as the World Wide Web Consortium,
the Global Grid Forum, and OASIS.

Many grid applications, in particular those used for
eScience, are built using web service composition [13],
also known as orchestration. This programming model
allows the use of functionality implemented by a set of
different web services, which each provide some portion
of the overall program’s functionality. The program which
describes the composition specifies the calls that are made
to web service operations, and uses the results returned by
these operations as inputs to other operations. This model
has similarities with the idea of function calls to shared li-
braries in traditional programming languages, except that
instead of restricting the composed functionality to that
provided by locally installed libraries, it is a richer sys-
tem building framework that allows this functionality to
be provided by different types of grid resources in a dis-
tributed manner.

Another related programming model is parallel pro-
gramming, in which a program consists of a set of con-
currently executing tasks which interact with each other
by exchanging messages over a network. The goal of par-
allel programming is to achieve better performance by dis-
tributing the work over a number of processors or separate
machines. This idea can be applied to the problem of web

1

services orchestration by invoking multiple web service
operations simultaneously, so that different machines pro-
viding services can be performing their respective opera-
tions at the same time, instead of in a sequential manner
in which one operation gets called after another.

Our work addresses the problem of providing a web
services orchestration framework which provides both
ease of use for the programmer, and the ability to coor-
dinate web services in parallel. In contrast to other work
done in this area which requires the parallelism to be spec-
ified explicitly, we provide a higher level programming
model that abstracts the details of concurrency away from
the programmer, so that they can concentrate on the func-
tionality of their program without regard to the details of
how it is to be parallelised. By doing this, we aim to make
it easier to build parallel web service compositions.

2 Related Work

A significant amount of work has been done on the prob-
lem of orchestrating web services, both in terms of lan-
guage design and implementation. The most prominent
such language is Business Process Execution Language
(BPEL) [6], an imperative language consisting of basic
control constructs and the ability to invoke calls on remote
web services. Each BPEL program is itself exposed as a
web service; upon receiving a request from a client, it per-
forms the necessary actions by interacting with other ser-
vices, and then returning the result to the client. Among
the control constructs provided is the ability to explicitly
specify service operations which can be executed in par-
allel. Similar languages include WSCI [16] and WSIPL
[1].

The Taverna Workbench [7] provides a graphical en-
vironment and execution engine for developing and exe-
cuting web service coordination workflows in the SCUFL
language, which uses a graph based model to connect op-
erations together. While it provides a less powerful set of
control structures than BPEL, the workflows lend them-
selves more directly to parallelism, and the engine ex-
ploits this to enable a high degree of parallelism between
operations without being explicitly directed to by the pro-
grammer. Triana [5] provides a similar environment in
which a workflow is constructed from operations imple-
mented as Java classes, and distributed over a set of execu-
tion hosts. Web services are also supported as components
within the workflow. The workflow model used by these
systems is similar to that of the concept of distributed pro-
cess networks. Previous work done in this area [14] has
explored the distribution of different nodes of a process
network, or dataflow graph, to different machines, to en-
able parallelism.

Existing systems for web service orchestration exhibit

a number of shortcomings which we seek to address.
Programming directly in BPEL requires the use of a
verbose XML-based syntax which requires significantly
more code to express ideas than other popular languages;
assignment statements that take one line of code in Java
or C require six lines of BPEL code, and the language in-
cludes no provision for features such as user-defined func-
tions which today are generally considered essential for
writing any sort of complex program. The graphical ap-
proach used by Taverna and Triana works well for small
programs, but it is difficult to write large and complex pro-
grams in these systems because the graphical representa-
tion of a program can become difficult to work with when
large numbers of nodes are present in the graph. The re-
stricted control structures provided by these systems also
limit the set of programs that can be expressed.

While mainstream programming languages can easily
scale to thousands of lines of code and beyond, the lim-
itations of the systems described above soon become ap-
parent when trying to write large and complex service or-
chestrations, especially when a non-trivial amount of ap-
plication logic is to be included in the orchestration code
itself. Additionally, the explicit parallelism in some or-
chestration languages such as BPEL requires a lot of ef-
fort on the part of the programmer to identify sections
of the code which can be run in parallel, and to manu-
ally specify dependencies between instructions in order
to avoid race conditions. Instead of this low-level model
of parallel programming, we instead take the approach of
using a functional language to specify the orchestrations,
which allows the parallelism to be automatically inferred
by the compiler. Considerable research has been done in
this area in the past; languages such as Lisp [11], Haskell
[4], and SISAL [9, 15] are examples, all of which have
had parallel implementations successfully developed. Al-
though this area of programming language research has
seen little application to date in the area of web ser-
vices orchestration, we feel that it is a useful approach for
achieving the goals of easily developing complex service
compositions that enable the use of parallelism.

3 System overview

To achieve these goals we have chosen to write a paral-
lel, distributed implementation of the XSLT programming
language [18]. XSLT is a pure functional language, with
single assignment semantics and side-effect free func-
tions, which means that it can easily be parallelised by
a compiler. As a fully-featured programming language,
it provides a significantly more powerful programming
model than the previous web service composition lan-
guages described above, particularly in terms of manip-
ulating XML data, a feature useful for processing the re-

2

sults of web service operations. Web service composition
is a new area for the language - to our knowledge, no other
XSLT implementation supports it. We believe that the lan-
guage has a lot of potential in this area that has yet to be
realised.

The other key reason for our decision to use XSLT for
our work is that it is based on the XML Schema type sys-
tem, used to specify the parameters and result types of
all web service operations defined using WSDL. Many
other languages used for web service development, such
as Java, have an “impedance mismatch” between their
own native type system and that used for web service calls
[12]. Some of the constructs available in XML Schema,
such as multiple element occurrences, mixed content, and
derivation by restriction, do not translate easily into Java
language constructs, and some types of objects in Java
such as threads and socket connections cannot be trans-
mitted meaningfully as parameters or results of a web ser-
vice operation. When programming in XSLT, the match
between the type systems, combined with the fact that our
interpreter supports serialisation of all data types, frees
the programmer from having to deal with the sometimes
awkward task of translating between two different sets of
data semantics.

The powerful programming constructs, ease of paral-
lelism, and type system support of XSLT make it a com-
pelling alternative to other approaches to web service or-
chestration. In particular, it allows significant application
logic to be implemented in the composition code itself,
rather than being delegated to web services implementa-
tions. This allows a programmer to more effectively make
use of a series of web services by augmenting their func-
tionality with additional logic.

3.1 Model of computation

In order to implement parallelism in our execution en-
gine, we compile XSLT programs into dataflow graphs.
In the dataflow model of computation [10], a program is
represented as a set of operations, each of which takes a
set of input tokens and produces a set of output tokens.
The operations are connected together based on the flow
of data from one operation to another. The graph corre-
sponding to a program contains a node for each operation,
with edges between the nodes corresponding to the flow
of data from an output port of one operation into the in-
put port of another. This model is an alternative to the von
Neuman architecture, which represents a running program
by global state which is updated by operations executed
in sequence. The dataflow model is more suited to paral-
lelism because the dependencies between instructions are
explicit; it is thus possible for independent operations to
be executed in parallel. Since all mainstream processors
available today are based on the von Neuman model, we

take the approach of simulating the dataflow model on
top of sequential hardware [2]. We achieve parallelism
by partitioning the dataflow graph into multiple sections,
each of which can be executed on a separate, sequential
processor.

The GridXSLT engine consists of two main compo-
nents: a compiler and an interpreter. The compiler takes
an XSLT program as input and generates a dataflow graph
from it. The interpreter then executes this dataflow graph
either sequentially, using a single instance of the inter-
preter, or in parallel, using multiple instances of the in-
terpreter running on different machines. This distributed
execution model is further described in Section 3.3.

3.2 Web services support

There are two ways in which web services are supported
in GridXSLT: exposing a program as a web service, and
acting as a client to a remote service.

On the client side, a call to a web service corresponds to
a single node in the dataflow graph. The input ports of the
node receive data to be submitted as parameters to the web
service operation, and once the response is received from
the service, the result value is placed on the single output
port from the node, from which it is transferred to subse-
quent nodes in the graph. These semantics are the same
as those for other types of function calls. As far as the
programmer is concerned, there is no distinction made be-
tween calls to internal functions specified by the language
(such as string or date manipulation), other functions de-
fined within the program, or web service operations. The
specific calling conventions for each of these are handled
internally within the interpreter, which involve either call-
ing the internal function, activating the dataflow graph of
the user-defined function, or submitting a HTTP request
with the name and parameters of the web service opera-
tion and asynchronously retrieving the response. A client
program written to invoke operations on a set of different
services and pass data between these services is known
as a web services composition, and may either be invoked
directly from the command line, or exposed as a service
itself.

The GridXSLT engine also allows an XSLT program to
be exposed as a web service. Each function corresponds
to an individual operation provided by the service, and the
parameters and return value from the function correspond
to the input and output messages for the operation. All
functions in the program can thus be invoked through the
web service interfaces by clients. If the client is another
XSLT program, this appears as a normal function call; for
other languages this is depends on the semantics of the
web services support that language provides, such as a
proxy object which handles marshalling of the parame-
ters. When a client requests a WSDL definition of the

3

service, this is automatically generated by the interpreter
by examining the source code for the program and creat-
ing the appropriate definitions for port types, messages,
data types and operations, as well as binding information
describing how the service can be accessed.

An XSLT program incorporating both of these mecha-
nisms satisfies the requirements for what is often referred
to as a composite web service [8]. This is a web service
which, when invoked by a client, coordinates the actions
of other web services, and produces a result based on the
output of these services. These other services may either
implement specific functionality themselves, or be com-
positions of further services, in which case the composi-
tion effectively consists of multiple levels.

While much research in the area of web service coor-
dination focuses on having the execution engine only per-
form a small amount of processing, with the bulk of the
computation being performed by the actual web services
being coordinated, we do not restrict our engine to this
model. The amount of computation that is performed by
the XSLT program itself versus the amount that is han-
dled by web services implemented in other languages and
merely invoked from the dataflow graph, is up to the pro-
grammer. The ratio between the two will vary according
to the needs of a particular application.

A key feature of the web services support in GridXSLT
is that it does not require the programmer to do anything
other than write the code for a service or client. Many
other web service implementations require significant ex-
tra effort to expose a program as a web service, or to in-
voke operations on a remote service. This often involves
tasks such as the creation of WSDL files, generation of
proxy classes and so forth. While these tasks can in some
cases be automated, they add extra complexity to the de-
velopment process as they require consideration within
the build process and still often take some effort to set
up.

Deploying a web service under GridXSLT simply in-
volves placing the program on a web server which is con-
figured to launch the interpreter whenever it receives re-
quests for XSLT files. If the client request is for the
WSDL service definition, this will be automatically gen-
erated based on the function signatures declared within
the program. If the request is for invocation of an op-
eration, the interpreter will handle the de-marshalling of
parameters, and then invoke the function in the program
that corresponds to the operation name, after which it then
encodes the return value and sends it back to the client in
the HTTP response.

Because XSLT uses the XML schema type system in-
ternally, there is no need for hand-crafting WSDL files
and schema definitions separately from the program as is
sometimes necessary when working in other languages,
due to the type system mismatch mentioned previously. It

also does not require wrapper classes to be generated to
represent complex data structures described in the XML
Schema definitions used by the service, since support for
these types is handled directly within the interpreter itself.

3.3 Distributed execution

Execution of programs by the interpreter occurs in a dis-
tributed manner. A set of machines, either within a cluster
or a grid, is configured to run an instance of the engine.
Each of these executes a portion of the dataflow graph,
which is split up and assigned to machines by a scheduler.
This scheduler has knowledge of the capabilities of each
machine, what services it provides, and other information
such as CPU load and memory capacity. The goal of the
scheduler is to divide the graph among machines in such
a way that maximises performance, such as taking advan-
tage of lightly-loaded machines and avoiding the transfer
of large volumes of data over the network where possible.
Each host assumes responsibility for executing its portion
of the dataflow graph, and the values that flow from one
node to another in the graph are transmitted across the
network as necessary.

There are two types of hosts that can participate in the
execution of a program:

• Execution hosts take a complete or partial dataflow
graph, and execute it by invoking the operations and
passing values from one node to another. Each of
these hosts must run an instance of of the GridXSLT
engine.

• Service hosts provide web services that are invoked
by the program, and do not need any knowledge of
the dataflow graph. These do not need to run an in-
stance of the engine; they instead run a hosting envi-
ronment for web services.

Execution hosts thus require the user to have the appro-
priate access privileges in order to run an instance of the
engine, or to have another party set it up for them, while
service hosts can be any arbitrary host on the Internet or
other wide area network that are accessible only through
web service interfaces. Any execution host may also act
as a service host, either by exposing XSLT programs as
web services through the engine itself, or by running a
separate web service hosting environment.

There are two widely recognised modes of distributed
execution for systems such as this: centralised orchestra-
tion and decentralised orchestration. In the centralised
approach, one specific host centrally coordinates all of the
work done by the others. After parts of the program are
executed on another host, the result is sent back to the
central one which then passes the data onto the host re-
sponsible for executing subsequent nodes in the graph. In

4

Service

Service hostExecution host

Execution hostExecution host

Figure 1: Distributed execution of a dataflow graph

the decentralised model, the work is split up between the
hosts in a distributed fashion, and there does not need to
be any central knowledge of the distribution. The hosts
act independently from any coordinating entity and sim-
ply exchange data and interact with each other. We intend
to explore both modes of execution in our engine. Other
work done in this area suggests that decentralised orches-
tration tends to yield significantly higher scalability [3].

Figure 1 shows an example of how a dataflow graph
would be executed in a distributed setting. Three exe-
cution hosts each have portions of the graph assigned to
them; the flow of values between nodes within a single
host is implemented using memory references, while be-
tween hosts the data must be serialised and sent over a
socket connection. The shaded node is a call to a remote
web service; one of the execution hosts acts as a client to
the service and submits the request once the call node be-
comes ready to execute. The response received from the
web service is then sent along the two edges out of this
node to the other nodes which are connected to it.

3.4 Load balancing for service access

Instead of specifying specific services to access, the pro-
grammer can alternatively specify an identifier which cor-
responds to a set of possible services, one of which will
be chosen at execution time. It is possible to have multi-
ple machines providing an identical service, such that the
result of the program is independent of which one gets
accessed. In these cases the execution engine can decide
which service to submit the request to based on a load bal-
ancing algorithm, which takes into account various types
of information about the grid resources. If a service call
needs to happen multiple times, for example once for each
element in an array, then each call can go to a potentially

different service instance, thus spreading the load across
the set of machines providing that service.

The service resolution is performed by a resource bro-
ker, which consults a registry of available services. The
identifier specified by the programmer is supplied to the
registry, which returns a list of matching services that pro-
vide the requested functionality. Each time a call needs to
be made to one of these services, this list is consulted and
a single service instance is chosen to which the request is
sent. If the chosen service instance cannot be reached due
to a network failure or some other error, the resource bro-
ker chooses a different instance instead. In this way, fault
tolerance is achieved seamlessly from the point of view of
the programmer and user.

Another way in which service instances can be resolved
is through the provision of multiple bindings in a WSDL
file. For a given abstract service, there may be multiple
concrete instances specified, possibly residing on differ-
ent hosts and accessible through different messaging pro-
tocols. This method is used if a service is identified in a
program by reference to specific WSDL file, rather than a
generic identifier. The use of this method is illustrated in
Section 4.

3.5 A concise language syntax

While the semantics of XSLT are well suited to web ser-
vice composition, one drawback of the language for this
purpose is its syntax, which is based on nested XML ele-
ments. Each construct in the language corresponds to an
element, with attributes indicating certain aspects of the
construct. For example, consider the following code for
computing the price of a product inclusive of sales tax,
depending on the type of customer:

<xsl:function name="f:calcprice"
as="xs:float">

<xsl:param name="cost"
as="xs:float"/>

<xsl:param name="tax"
as="xs:float"/>

<xsl:param name="customer"
as="xs:string"/>

<xsl:choose>
<xsl:when

test="$customer = ’exempt’">
<xsl:value-of
select="$cost"/>

</xsl:when>
<xsl:otherwise>
<xsl:value-of
select="$cost * (1 + $tax)"/>

</xsl:otherwise>
</xsl:choose>

5

</xsl:function>

This syntax is considerably more verbose than most
other programming languages, and for large programs, it
can be tedious to write and difficult to read; BPEL also
suffers from this same problem. The use of such a syntax
for XSLT likely came about because of the language’s fo-
cus on processing XML data, and many XSLT programs
do in fact contain significant amounts of XML intermixed
with language constructs. While it is appropriate for some
cases, we believe that for programs such as web service
compositions, which are mostly logic oriented, a more
condensed syntax is desirable.

XSLT is actually two languages in one; many con-
structs in the language are specified using XPath expres-
sions [17], which are not based on XML but instead use
a more traditional syntax. The $cost * (1 + $tax)
expression in the example above, as well as the select
and test attributes given for the other value-of and
when elements, are written in XPath syntax. We have
developed a language called XSLiTe, which is a super-
set of XPath that contains equivalent constructs for all
elements used by XSLT, while maintaining the same se-
mantics. This syntax eases the task of writing programs,
and makes the code considerably clearer and shorter. The
above code sample translated into this syntax looks like
this:

float calcprice(float cost,
float tax,
string customer)

{
if ($customer = ’exempt’)
$cost;
else
$cost * (1 + $tax);

}

We have developed a parser for this language which
can act as input into our dataflow compiler, and can also
output the program in the standard XSLT syntax. Using
this, we have successfully been able to write programs in
XSLiTe and then run the translated programs using exist-
ing XSLT engines as well as our own. Initial experiments
have shown that in many cases the condensed syntax re-
quires around half the amount of code to express a given
piece of functionality compared to the normal XSLT syn-
tax.

4 Example

In this section we describe an example of how the
GridXSLT engine can be used to coordinate web services

in parallel. We base our example on the use case of a
search engine, which, given a set of search terms, per-
forms a query on an index produced from a web crawl
and returns a list of matching documents, along with in-
formation about them. This example uses two web ser-
vices - a reverse index service, which provides a mapping
from a word to a list of matching documents containing
that word, and a forward index, which, given a document
URI, returns information about that document, such as the
content or metadata.

The code shown below first uses the reverse index to
do a lookup on each of the words provided in the query,
and then merges the resulting document lists together.
It then consults the forward index to obtain details of
each document, which it adds to a result list. The re-
sult list is returned as a resultset element, containing
a series of result children. Each of these has a uri
attribute corresponding to the list entry, an abstract
child containing the first 1000 characters of the document,
and a sequence of other elements corresponding to the
document metadata. A size attribute is also added to
the resultset element indicating the number of docu-
ments it contains.

This code uses the functional programming style of
XSLT to produce the results; rather than assigning to vari-
ables or appending to lists in a sequential fashion, the re-
sults of each statement are added in-place to the list. For
example, the result of executing the for-each construct
is the list of result elements containing the values re-
turned by the code within the block, including the results
of the getmetadata() service call. This code is eval-
uated once for each element in the list, with the context
variable (.) being mapped to the relevant list element for
each evaluation.

Namespaces are used to associate a service definition
with a particular prefix. In the normal XSLT syntax, these
are defined using the standard XML namespace mecha-
nisms, while in the XSLiTe syntax shown here they are
declared using a namespace statement. When a call to
a function such as ri:lookup() is made, the names-
pace associated with the prefix is inspected. If, as in this
case, it is mapped to a web service definition, then the
function call is then treated as call to the corresponding
web service operation.

function doSearch(var $searchterms)
{
namespace ri "reverse_index.wsdl";
namespace fi "forward_index.wsdl";

var $matches =
for $t in $searchterms
return ri:lookup($t);

var $distinct =

6

distinct-values($matches);

%resultset {
#size(count($distinct));
for-each ($distinct) {
%result {
#uri(.);
fi:getmetadata(.);
%abstract {
substring(fi:getcontent(.),

0,1000);
} } } }

The compiled dataflow graph for this function is shown
in Figure 2. This graph shows the dependencies between
different parts of the code; the reverse index lookups must
be done before document information can be obtained, be-
cause the latter part of the code requires the merged docu-
ment list as input. The two rectangular boxes surrounding
the lookup operation and result element construction cor-
respond to the code within loops; these parts of the graph
are executed multiple times - one for each item. Each sub-
graph execution is independent of the others, and thus they
can all be run in parallel with each other. Several calls to
the reverse index service can be in progress simultane-
ously, and, once the merged document list is constructed,
each document can be processed in parallel with the oth-
ers. Within the code for constructing a single result ele-
ment, the getcontent() and getmetadata() op-
erations can also be run in parallel.

With the provision of multiple service instances for
both the reverse index and the forward index, the in-
dividual calls to lookup(), getcontent() and
getmetadata() can be distributed across the set of
hosts providing these services, reducing the amount of
computation that is performed by each. In this example,
which directly maps the namespace prefixes for the oper-
ations to WSDL files, the set of available hosts is deter-
mined by examining the set of bindings specified in the
WSDL definition for each service.

While this is only a fairly simple example, it demon-
strates the way in which parallelism can easily be obtained
for a set of web services distributed across multiple ma-
chines. The programmer does not need to explicitly spec-
ify this parallelism in the program code; it is automati-
cally inferred by the compiler. Additionally, the ability
to use a web service simply by associating a namespace
prefix with its WSDL definition and then making calls to
functions in that namespace, makes the task of composing
the functionality of several web services easy. The code
shown above can be executed directly by the GridXSLT
engine without any extra build steps such as the genera-
tion of proxy classes, as the serialisation of data sent to
and from the web services is all handled internally.

0fi:getcontent

substring

1000

fi:getmetadata

mkelem(abstract)

mkelem(result)

mkelem(resultset)

mkattr(size)

count

distinct−values

searchterms

ri:lookup

Figure 2: Dataflow graph for the example program

5 Conclusion

In this paper we have presented the design of the
GridXSLT engine, which we are currently in the process
of implementing. The design addresses our goals of pro-
viding an easy to use framework for composing web ser-
vices in a way that takes advantage of parallelism and al-
lows for the inclusion of application logic in the compo-
sition programs themselves. A number of features of our
design reduce the effort required to develop both web ser-
vices and clients, including the use of a concise syntax for
specifying programs, implicit serialisation of data without
the use of proxy classes, automatic generation of WSDL
files, and a high level programming model which lends it-
self to automatic parallelisation. Our work also enhances
the usefulness of XSLT by providing the ability to use
it for web service composition and parallel programming,
and this is leveraged to provide a more powerful composi-
tion framework for web services than many other systems
which have been designed for this purpose.

Our current work involves implementation of this de-
sign. To date, we have written a prototype compiler and
interpreter capable of executing simple XSLT programs,
and a parser for XSLiTe which is able to translate pro-
grams into the standard XSLT syntax accepted by other
engines. Much of the implementation effort so far has
been concerned with getting the groundwork in place for
a full implementation of the language, including support
for parsing and verification of XML Schema and XSLT
source files, and associated infrastructure for regression

7

testing and development tracking. In the near future we
expect to have a demonstration available which will in-
clude web services support and parallel execution. Our
intention is to eventually provide support for 100% of the
specification, however for the medium term we have iden-
tified a subset of the specification necessary for evaluation
of our research ideas.

The concepts of grid computing and specifically service
oriented architectures are becoming increasingly promi-
nent in both scientific and commercial areas. The ability
to easily and efficiently compose services together in a
high level programming model is a desirable capability
which we feel is likely to lead benefits in a range of areas
that utilise distributed computing resources. Our research
attempts to address this need by using a number of novel
approaches as outlined in this paper.

Further information about this project is available at
http://gridxslt.sourceforge.net/.

References

[1] D. W. Cheung, E. Lo, C.Y. Ng, and T. Lee. Web
services oriented data processing and integration. In
The Twelfth International World Wide Web Confer-
ence (WWW2003), Budapst, Hungary, May 2003.

[2] S. A. Edwards. Tutorial: Compiling concurrent lan-
guages for sequential processors. ACM Transactions
on Design Automation of Electronic Systems (TO-
DAES), 8(2):141–187, April 2003.

[3] G. B. Chafle et. al. Decentralized orchestration of
composite web services. In WWW Alt. ’04: Proc.
13th international World Wide Web conference on
Alternate track papers & posters, pages 134–143,
New York, NY, USA, 2004. ACM Press.

[4] P. W. Trinder et. al. GUM: a portable parallel
implementation of Haskell. In PLDI ’96: Proc.
ACM SIGPLAN 1996 conference on Programming
language design and implementation, pages 79–88,
New York, NY, USA, 1996. ACM Press.

[5] S. Majithia et. al. Triana as a graphical web services
composition toolkit. In Simon J. Cox, editor, Proc.
UK e-Science All Hands Meeting, pages 494–500.
EPSRC, CD-Rom only, September 2003.

[6] T. Andrews et. al. Business Process Execu-
tion Language for Web Services version 1.1.
http://ifr.sap.com/bpel4ws/, May 2003.

[7] T. Oinn et. al. Delivering web service coordination
capability to users. In Proc. 13th international World
Wide Web conference on Alternate track papers &

posters, pages 438–439, New York, NY, USA, 2004.
ACM Press. http://taverna.sf.net.

[8] V. Agarwal et. al. A service creation environment
based on end to end composition of web services.
In WWW ’05: Proc. 14th international conference
on World Wide Web, pages 128–137, New York, NY,
USA, 2005. ACM Press.

[9] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report
on the SISAL language project. Journal of Parallel
and Distributed Computing, 10(4):349–366, 1990.

[10] W. M. Johnston, J. R. Paul Hanna, and R. J.
Millar. Advances in dataflow programming lan-
guages. ACM Computing Surveys (CSUR), 36(1):1–
34, 2004.

[11] D. A. Kranz, Jr. R. H. Halstead, and E. Mohr. Mul-
T: a high-performance parallel Lisp. In PLDI ’89:
Proc. ACM SIGPLAN 1989 Conference on Program-
ming language design and implementation, pages
81–90, New York, NY, USA, 1989. ACM Press.

[12] E. Meijer, W. Schulte, and G. Bierman. Program-
ming with circles, triangles and rectangles. In Proc.
XML 2003, 2003.

[13] S. Tai, R. Khalaf, and T. Mikalsen. Compo-
sition of coordinated web services. In Proc.
5th ACM/IFIP/USENIX international conference on
Middleware, pages 294–310, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

[14] D. Webb, A. L. Wendelborn, and K. Maciunas. Pro-
cess networks as a high-level notation for metacom-
puting. In Proc. International Parallel Programming
Symposium (IPPS’99), workshop on Java for Dis-
tributed Computing, Puerto Rico, April 1999.

[15] A. L. Wendelborn and H. Garsden. Exploring the
stream data type in SISAL and other languages.
In Architectures and Compilation Techniques for
Fine and Medium Grain Parallelism, pages 283–
294, 1993.

[16] World Wide Web Consortium (W3C). Web service
choreography interface (WSCI) 1.0. W3C Note, Au-
gust 2002. http://www.w3.org/TR/wsci/.

[17] World Wide Web Consortium (W3C). XML path
language (XPath) 2.0. W3C Working Draft, April
2005. http://www.w3.org/TR/xpath20/.

[18] World Wide Web Consortium (W3C). XSL transfor-
mations (XSLT) version 2.0. W3C Working Draft,
April 2005. http://www.w3.org/TR/xslt20/.

8

