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Abstract

Data-oriented workflows are often used in scientific applications for executing
a set of dependent tasks across multiple computers. We discuss how these can
be modeled using lambda calculus, and how ideas from functional programming are
applicable in the design of workflows. Such an approach avoids the restrictions often
found in workflow languages, permitting the implementation of complex application
logic and data manipulation.

This paper explains why lambda calculus is an appropriate model for workflow
representation, and how a suitably efficient implementation can provide a wide
range of capabilities to developers. The presented approach also permits high-level
workflow features to be implemented at user level, in terms of a small set of low-level
primitives provided by the language implementation.

1 Introduction

Workflow systems [26] have emerged in recent years as tools for building distributed
applications involving the coordination of software components at different sites. In
scientific fields, these are generally based on a data-oriented model, where a series of side
effect free operations are performed on a collection of input data to produce a result.
Each operation is realised as a task that is executed on a remote computer, and invoked
by the workflow engine over the network. Tasks are generally either jobs submitted via
batch queuing systems such as Condor [24] or Globus [9], or invocations of RPC-style
services using protocols such as SOAP. Examples of workflow systems include DAGMan
[24], Chimera [10], Taverna [7], and Kepler [6].

A model of computation specifies the way in which the task invocation is carried out at
an abstract level. Usually, this is based on a set of data dependencies between tasks, so
that a given task only executes once all of its inputs are available, and the outputs are
sent to other tasks. These can be expressed as a directed acyclic graph (DAG), which
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can be edited graphically or textually. This model is sometimes extended with additional
features for loops, conditional tests, and nested workflows.

Many of these systems are based on models of computation which only support a limited
set of programming constructs. Typically, these models are either not Turing complete, or
do not support fine grained computation. This means that only very simple programming
logic can be implemented in the workflow language, and any work involving complex logic
must be carried out by external jobs or services written in more powerful programming
languages. This is a problem for complex workflows, because it sometimes means that
a developer must switch to a different language to perform certain actions, such as data
manipulation or intermediate computation on the values exchanged between different
tasks.

This issue can be addressed by using a more flexible model of computation which is
Turing complete and can be implemented in such a way that both high-level and low-
level programming is equally well supported. It is preferable that such a model maintains
the advantages of existing workflow models, such as explicit data dependencies, lack of
side effects, and a level of abstraction above that of mainstream imperative programming
languages. In this paper, we discuss the suitability of lambda calculus for expressing
workflows, and how it can meet these requirements.

1.1 Lambda calculus

Lambda calculus [3] is an abstract model of computation which is the theoretical founda-
tion of functional programming. It specifies a notation in which functions are defined as
lambda abstractions, consisting of a set of arguments and a body, such as the following:

(λa.λb.λc.b (a c c))

When such a function is applied to arguments, its body is instantiated by replacing all
variable references with the supplied arguments. Evaluation proceeds via a sequence of
reductions, each of which transforms the expression into a version that is closer to its
normal form, or result value:

(λa.λb.λc.b (a c c)) + sqrt 8
=> sqrt (+ 8 8)
=> 4

Although the basic lambda calculus model does not include any built-in operations or
data types, any language implementation based on the model will provide some set of
primitives. These may be coarse grained, such as operations to invoke web services with
data values representing XML trees, or fine grained, such as arithmetic operations and
numeric values. The set of primitives is an implementation choice which is independent
of the basic model of program representation and evaluation.

The most common technique for evaluating lambda calculus is graph reduction [17]. In
this model, the program is represented in memory as a graph, much like a syntax tree
produced by a parser. Evaluation proceeds by traversing the graph to locate expressions
that can be reduced, and replacing the relevant graph nodes with the result obtained from
evaluation of the expression. This graph representation has similarities with DAG-based
workflows, as we shall see in section 3.
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An important property of the lambda calculus is that the result of evaluation is in-
dependent of the order in which the reductions are performed. This is known as the
Church-Rosser theorem [4], and is what enables separate parts of the graph to be safely
reduced in parallel. In the context of workflows, this means invoking multiple tasks at
the same time. This relies on the assumption that all tasks are side effect free, which is
typically the case for scientific workflows.

1.2 Motivation

The main purpose of this paper is to explain how concepts from the world of functional
programming are useful in the context of workflows. Existing workflow engines support
only limited programming models, in which the focus is on invoking services and passing
data between them, but not on other aspects like computation or data processing. We
believe there are significant benefits to be gained from enhancing the capabilities of
workflow systems to the point where they are just as powerful as general-purpose scripting
languages. An important step towards this is consideration of the programming models
upon which these systems are based.

Our philosophy is that workflow engines are simply programming language implementa-
tions which provide novel features related to concurrent and distributed programming.
The notion of coordinating execution of a set of tasks is much like that of representing
program logic as a set of calls to functions and operators, which is essentially the act
of programming. The fact that the execution involves interaction with services over a
network is largely a detail to be addressed at the implementation level. This is why
programming models which are usually used only for local computation, such as the
functional programming model, can also be applied to distributed programming.

Functional programming is well suited to data-oriented workflows, due to its emphasis
on abstraction and side effect free computation. Both workflow engines and functional
language implementations go to significant effort to shield the programmer from low-level
execution details, allowing them to focus on what the program does rather than how it
does it. Extensive work has been done on parallel execution of functional languages
[12], leveraging the lack of side effects to safely execute different parts of the program in
parallel without introducing non-determinism. Much of this work is of relevance to the
implementation of workflow engines.

Lambda calculus is the basic programming model upon which functional programming
languages are based. Understanding the simplicity and elegance of this model is key
to realising how a very wide range of programming capabilities can be supported in a
language with only a very small feature set. In this paper we discuss several common
features of workflow languages that can be implemented in terms of the lambda calculus.
Some of these rely on certain primitive operations being provided, while others depend
on certain execution semantics, but the model itself does not require extension to support
these features.

The syntax of lambda calculus is very concise, and reasonably close to what programmers
are accustomed to. Many workflow languages use XML as a representation format, which
we consider to be a poor choice for programming language syntax due to its verbosity.
Although these formats are typically intended to be read and written by graphical editors,
there is much to gain (and little to lose) by choosing a more compact syntax suitable for
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Figure 1: Task dependency DAG

editing by hand. Conciseness is valued by programmers, who are more likely to choose a
language that readily facilitates program development. This issue is explored further in
the next section.

It is also worth mentioning that the basic lambda calculus itself, while capable of being
used to define a workflow, is usually extended by implementations with additional fea-
tures. These include syntactic sugar, along with built-in operations and data types. The
latter are addressed in Section 4.1.

2 Graph types

Task dependency graphs, sometimes referred to as directed acyclic graphs (DAGs), con-
tain nodes specifying tasks, and edges representing data dependencies. The tasks are
executed in such an order that if task A depends on task B, then B will be executed first,
with its output data being transferred to A. Each task can be viewed as a “function”
taking a set of input values and producing an output value. In implementation terms,
function evaluation corresponds to invoking a computation on a remote resource. This
model is typically referred to as dataflow.

Figure 1 shows an example workflow. Task A depends on B and C, which both depend
on D. Thus the execution order will be D first, then B and C (either sequentially or con-
currently), and finally A. The “result” of the workflow will be the output data generated
by A.

An alternative model is a graph of application nodes. In this model, a task (or equivalently,
function call) is modeled as a sequence of application nodes, one per input. The last link
in the chain is a reference to a function (which may be executed remotely), and each of
the input parameters are also graphs. Figure 2 shows the above workflow in this model,
with application nodes represented by the character @.

The key differences with this model are that nodes can correspond to data values, and
functions are treated as values. Functions can thus be passed around as parameters and
returned as results from so-called higher order functions. This property enables a wide
range of useful techniques that are common in functional programming, and is also useful
for modeling abstract workflows, as described in Section 4.8.
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Figure 2: Function application graph

3 Workflow representation

There are several common ways of representing the information that specifies a workflow
structure. One that is common in many workflow systems is a graphical representation, in
which task nodes are represented as shapes, with lines and arrows indicating dependencies
between them. This representation is aimed at end users who utilise a graphical editor
to construct their workflow. Figure 1 is a typical example of this representation.

Even if a graphical editor is used, a text-based format is also supported for storing the
file on disk. An obvious serialisation of the graphical view is to represent the graph by a
series of statements defining the set of nodes, along with another set defining the edges.
The statements may be represented either as XML elements, or using some other syntax.
An example of the graph from Figure 1 represented in this way is the following:

node A
node B
node C
node D
edge B -> A
edge C -> A
edge D -> B
edge D -> C

An alternative way of representing a graph is as an expression, in which each node is
specified by writing its name, followed by a list of parenthesised sub-graphs that point
to it. In fact, this corresponds exactly to the syntax used by the lambda calculus. The
same graph expressed in this manner would be as follows:

A (B D) (C D)

This representation is more concise, and closer to the way in which programmers normally
write expressions. However, it does not properly handle tasks whose output is sent to
more than one destination, as is the case with D. The syntax is still acceptable in this
example, since D takes no inputs. However, tasks which do take inputs, such as H in
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Figure 3, need a better solution. This problem can be solved using a lambda abstraction,
by binding a symbol to the sub-graph, and referencing it where necessary:

(λx.E (F x) (G x)) (H I J)

It is straightforward to extend the syntax of lambda calculus with let expressions, which
can be transformed at parse time into the above format, e.g:

let x = (H I J) in (E (F x) (G x))

Each of these graphical and textual formats is capable of representing the same informa-
tion, and transformation from one to another is straightforward. A workflow engine that
uses lambda calculus as its input language can execute workflows that have been exported
from graphical editors, or translated from other DAG-based workflow languages.

Converting these workflows into lambda calculus does not alter their high-level nature.
We have still described nothing about what each of the tasks actually does, how the
workflow engine causes them to be invoked, or the way in which data is passed between
them. These are still details which we consider to be abstracted away; the only difference
is the notation in which we have expressed the workflows. In Section 4, we will discuss
how these functions may be implemented in concrete terms.

4 Modeling workflow features

A model of computation specifies the abstract nature of tasks and how they are used
together during execution, but does not specify how those tasks are actually implemented.
Any workflow system must provide facilities for invoking a task on a remote machine.
In most cases, this invocation is provided as a primitive within the workflow language,
and implemented explicitly within the execution engine. This is unavoidable for workflow
languages that are not Turing complete, because the low-level interaction with the remote
host often requires language facilities that are only present in more powerful languages.

Because lambda calculus is capable of expressing arbitrarily complex computations, an
efficient implementation that provides a few basic data types and low-level operations
can enable task invocation to be implemented in terms of the workflow language itself.
Instead of coarse grained primitives for launching tasks, fine grained primitives for low-
level operations like establishing TCP connections and writing binary data may be used
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+, -, *, /, % Arithmetic functions
==, !=, <, <=, >, >= Numeric comparison
and, or, not, if Logical & conditional
cons, head, tail List operations
connect Network connections

Table 1: Primitive operations

to build up higher level abstractions for task invocation. This approach is analogous to a
micro kernel based operating system, in which all high-level functionality is implemented
at user level on top of basic primitives provided by the runtime environment exposed by
the kernel.

The workflows discussed in the previous section represented each task as a function ap-
plication, such as (B D), which is a call to the task B, supplying the output of D. These
functions were not defined, but assumed to be mapped by the workflow engine into re-
mote tasks. This mapping can be achieved by making each function a built-in primitive,
or defining those functions in the workflow language as expressions which call lower level
networking primitives to invoke the remote computation. In this section, we describe how
this latter approach can be used to provide much of the functionality that is normally
implemented as primitives by existing workflow engines.

4.1 Primitives

In order to implement high-level workflow functionality in terms of low-level operations,
it is necessary for the language implementation to provide a small number of basic primi-
tives. These should include capabilities for manipulating data at the byte level, perform-
ing arithmetic operations, and manipulating data structures. Table 1 lists a possible set
of operations. The built-in data types should include at least numeric values, cons pairs,
and nil values.

While the basic lambda calculus can theoretically be used to express any computation,
primitives like these are necessary in order to achieve reasonable performance. Addi-
tionally, many optimisations can be made within the language implementation to gain
efficiency, such as storing cons lists internally as arrays, and compiling expressions into
executable code. As we are interested primarily in the computational model, we will not
go into further details of these optimisations here.

Many abstractions can be built up from these primitives that can be used to support
high-level workflow functionality. Cons lists can be used to support a wide range of data
structures, such as strings (lists of character codes), binary data (lists of byte values), and
XML trees (lists of element objects containing strings and other elements). Conditionals
are supported by the if function; iteration can be achieved using tail recursion, and map,
filter, and reduction operations can be defined in terms of the built-in list operations.
These techniques are well known in the functional programming literature [1].
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4.2 Network connections

The connect primitive listed in Table 1 deserves special attention. We argue that for a
data-oriented workflow model in which all remote operations are free of side effects, it
makes sense to treat the network connections that invoke these operations as side effect
free mappings from input to output. This can be achieved by providing a function which
accepts the data to be sent across the connection as an input parameter, and returns the
data received from the connection.

This approach differs from that used by other functional languages, which make the
conservative assumption that all I/O operations involve side effects, and must therefore
be executed in an explicitly defined sequential order. These languages typically provide
finer-grained operations for dealing with connections, often separating the establishment
of a connection from subsequent reads and writes. Our approach instead provides a
higher-level view of a connection, which we believe is more appropriate for the functional
programming model. This does however rely on the programmer guaranteeing that they
will only access side effect free services.

We define connect as a built-in function taking three parameters: host, port, and input
stream. The first two are used when establishing the connection, while the third is a cons
list supplied by the program, which the runtime system sends across the connection. The
result of a call to the connect function is itself a cons list, which can be read from to
obtain data from the connection. It can be treated as a string by interpreting each value
in the list as a character code, which is useful for implementing text-based protocols such
as HTTP.

4.3 Job submission

Tasks used within workflows are sometimes realised as jobs, which involve execution of a
program installed on a remote host. Batch queuing systems like PBS [13], Condor [24],
and Sun Grid Engine [11] provide a network-based interface via which specified programs
can be launched. The request messages used to launch these jobs contain details of the
program to run, as well as command line arguments and names of input files. Invoking
these tasks from within a workflow requires the workflow engine to open a connection to
the job submission system, and send appropriately-formatted request data based on the
input parameters to the task. Once the job has finished, a response is sent back to the
client.

The way in which the network interaction occurs depends on the protocol used by the
job submission mechanism. In some cases, separate network connections may be used to
submit the request and then later retrieve the result; in others, a single connection may
be kept open until the job completes, and the results sent back directly. The logic to
handle this interaction may be implemented as a set of support routines provided by the
workflow system, using lambda calculus combined with the primitives given above.

As a simple example, consider a job queue that accepts submissions via HTTP GET
requests, and sends the job output directly back to the client in the HTTP response. A
script on the web server named runjob.pl accepts a program parameter specifying the
name of the executable file, and an args parameter containing the command line argu-
ments to be passed to the program. The code in Figure 4 invokes this script by sending
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submit_job = (λhost.λprog.λargs.
(parse_response

(connect host 80
(++ "GET /runjob.pl?program=" (++ (urlencode prog) (++ "&args="
(++ (urlencode (join " " args)) " HTTP/1.0\r\n\r\n")))))))

Figure 4: Support routine for job submission

it a request with the query string formed based on supplied program name and argument
list. This code assumes separately defined routines are available for string concatenation,
list joins, parameter encoding, and HTTP response parsing. It also assumes that the
parser converts strings into cons lists of characters.

Individual tasks can be be implemented as functions which call this routine, supplying
concrete details about the job to be executed. For example, a task A that takes two string
arguments could be defined as shown below, where x and y represent the arguments:

A = (λx.λy.submit_job "hydra" "/home/pmk/myprog" (cons x (cons y nil)))

This task may then be called from a workflow, in this case taking as input the results of
tasks B and C:

A (B D) (C D)

Implementing tasks in such a manner preserves our ability to deal with them at a high
level. The workflow specification remains the same as the example given in Section 3;
here we have gone into one more level of detail to specify how it is realised in actual
terms. The concrete implementations may be arbitrarily complex, involving all of the
necessary mechanisms to invoke a job, including support actions such as staging data in
or out of the remote host, and monitoring for task completion.

4.4 Services

Services can be accessed in a similar manner to the above. RPC mechanisms are generally
implemented by having the client establish a connection to the server, send it a request
containing the operation name and input parameters, and then having the server send
back the result. For example, web services utilise the HTTP request/response mechanism
and encode the parameters and results using XML and SOAP.

A workflow task corresponding to a web service invocation can be defined as a function
which makes calls to support routines that submit a SOAP request to a web server.
Depending on how the workflow system is implemented, the values passed between tasks
could be represented as plain strings, or more complex data structures such as XML trees.
It is the responsibility of the support routines to convert between these representations
and the on-the-wire format.

As an example, the code in Figure 5 implements a simplified version of SOAP over HTTP.
The postreq function accepts a host and URL path, as well as a request body. It makes
a HTTP POST request containing the appropriate headers. The soapcall function
accepts the host and path, as well as the arguments to be passed to the service, which are
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postreq = (λhost.λpath.λreq.
(connect host 80

(++ "POST "
(++ path
(++ " HTTP/1.0\r\n"
(++ "Content-Type: text/xml\r\n"
(++ "Content-Length: "
(++ (numtostring (len req))
(++ "\r\n\r\n" req)))))))))

soapcall = (λhost.λpath.λbody.
(parse_response

(postreq host path
(++ "<Envelope><Body>"
(++ body

"</Body></Envelope>")))))

Figure 5: Support routines for web services

assumed to be already encoded in XML. It wraps these in a SOAP envelope and posts
the request to the server. The response is then parsed to extract the result value.

Consider a workflow task B that calls a stock quote service. It takes a single parameter
specifying the symbol name, and submits a SOAP request to http://stockexchange/getquote
using the above routines:

B = (λsym.soapcall "stockexchange" "/getquote"
(++ "<symbol>" (++ sym "</symbol>")))

4.5 Shims

A common problem encountered when developing workflows is that tasks sometimes use
different input and output formats. These formats may contain the same information but
with a different syntax, or similar information that requires both syntactic and semantic
transformation to achieve compatibility. When such conversion is needed, additional
components must be added to the workflow to perform the necessary conversion. These
are known as shims or adapters [8, 15].

The need for shims is due to the lack of support in many workflow languages for the
required data manipulation. Instead of being able to access fields of an object or perform
basic string manipulation using built-in language constructs or APIs, a developer must
create separate components or services to perform these tasks. Features like these, which
are common in mainstream programming languages, involve significant effort and com-
plexity in workflow languages. While this cost is sometimes worth paying in order to get
the benefits provided by workflow languages, there are many cases where the tradeoff is
questionable.

Of course, these problems could be avoided by writing the workflow entirely in a language
like Java or C, but this would involve giving up other benefits of workflow languages,
such as automatic parallelisation and fault tolerance. Instead, it is preferable to use a
language which meets both types of requirements. Lambda calculus, combined with basic
primitives such as those suggested in Section 4.1, meets this criterion.
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4.6 Data parallelism

Workflows can often benefit from data parallelism, where each item in a list of values
is processed separately, potentially on different computers. This sort of processing is
common in task farming middleware, but is not well supported by DAG-based workflow
languages. The reason is that the latter typically assume a fixed number of tasks, thus
requiring sequential iteration to process lists [21]. A solution is to use the map construct
common in functional programming languages, which can easily be expressed in lambda
calculus using the cons, head, and tail primitives:

map = (λf.λlst.
if lst

(cons (f (head lst))
(map f (tail lst)))

nil)

It is possible to implement the runtime system in such a manner that code such as this is
automatically parallelised. Other operations like filter and reduce can be implemented
in a manner similar to the above.

4.7 Control structures

Some workflow engines provide a limited ability to control the flow of execution based
on data computed during the workflow. These constructs are standard features present
in all major programming languages, and their implementation in functional program-
ming languages is well known. For example, conditionals are implemented using the if
function, which takes a boolean expression as well as true and false branches. When
evaluated, it evaluates the conditional parameter and returns either the second or third
argument, depending on the result.

Sub-workflows can be modeled as functions. Wherever they are used, each input link
corresponds to an actual parameter, and the output link is the result of the function
call. Multiple outputs can be handled by wrapping them in lists. Iteration can be
modeled using tail recursion, which can be performed in constant space by most functional
language implementations. Each iteration is simply another call to the same function but
with updated values passed as parameters. A portion of the workflow that needs to be
executed multiple times for different inputs would be expressed as an application of the
map function to a lambda abstraction, as described in Section 4.6.

4.8 Abstract workflows

Some workflow engines support the concept of abstract workflows [5, 22], which are work-
flow specifications that do not explicitly specify which resources are to be used. Concrete
workflows are constructed by instantiating an abstract workflow with a specific set of re-
sources. In lambda calculus, abstract workflows can be modeled as higher order functions
which take parameters specifying the concrete implementations of tasks. For example,
the workflow from Section 3 can be parameterised as follows:

(λA.λB.λC.λD.A (B D) (C D))
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This function can then be applied to a set of function parameters which implement tasks
A-D. If none of the parameters contain any free variables, it is a concrete workflow which
can be directly executed. Otherwise, it is a “less abstract” workflow that contains some
implementation details but is still parameterised. For example, the following abstract
workflow specifies each task as a web service call to a specific operation, but is parame-
terised by the service URLs:

AWF =
(λurl1.λurl2.λurl3.λurl4.

(λA.λB.λC.λD.A (B D) (C D))
(λx.y.wscall url1 "a" ...)
(λx.wscall url2 "b" ...)
(λx.wscall url3 "c" ...)
(wscall url4 "d" ...))

This abstract specification can then be instantiated into a concrete workflow by applying
the function to a set of parameters specifying a specific set of services to be accessed:

(AWF "http://a.org/analyse"
"http://b.org/filter"
"http://c.org/process"
"http://d.org/query")

One application of the abstract workflow concept is to provide quality of service (QoS)
mechanisms, whereby services are chosen at runtime based on certain requirements. For
example, a user of the above workflow may want to specify that they want to use the
cheapest service available that implements A, the fastest available versions of services B
and C, and the most reliable version of service D. Assuming the workflow engine provides
functions to determine the best choice in each case, this can be expressed as follows:

(AWF (find_cheapest "a")
(find_fastest "b")
(find_fastest "c")
(find_most_reliable "d"))

Abstract workflows defined using these techniques are a flexible way of achieving reuse.
A scientist may develop a workflow parameterised by service addresses, and then run it in
their local environment by supplying the necessary set of URLs. The abstract workflow
could subsequently be shared with other scientists, who may run it with the local versions
of those services hosted at their own institution, or with a different set of input data. Such
usage is equivalent to a script which uses a configuration file or command line parameters,
rather than using hard-coded information.

The ability to express abstract workflows in this manner does not require explicit support
from the workflow engine. It comes about as a natural consequence of the inherent
support for higher order functions that is present in lambda calculus. It is one of the
many examples of how powerful functionality can be built up from a minimal set of
language constructs, instead of extending a monolithic infrastructure.
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4.9 Support for higher-level workflow languages

A workflow engine based on the model of lambda calculus may be used to execute other
workflow languages, by writing compilers for those languages which generate lambda
calculus as output. This essentially treats lambda calculus as an intermediate language
in a similar manner to Java bytecode, although at a higher level of abstraction. Both
existing workflow languages and future ones could be supported in such a manner. The
key requirement that input languages would need to meet are that they only use side
effect free computation.

There are a variety of existing workflow languages which could be compiled into such
an intermediate language. Those which are based on task dependency graphs are good
candidates, since they have a straightforward translation into lambda calculus, as de-
scribed in Section 3. More complex languages which provide a richer feature set but are
still based on purely side effect free computation would also be suitable. We are cur-
rently developing an implementation of XQuery [2] based in this approach, for specifying
workflows that utilise XML-based web services [20].

5 Example

Figure 6 shows an example of an image processing workflow expressed using the approach
described above, which has been successfully run on the implementation described in [20].
The workflow does the following:

1. Obtain a list of images available from a service (using the list task)

2. Retrieve each image (using the get task)

3. Analyse each to find the average hue, saturation, and value (using the analyze
task)

4. Resize each image to produce a 75×75 thumbnail (using the resize task)

5. Sort all the thumbnails by their hue, achieving a spectrum-like effect

6. Combine all the thumbnails into one large, tiled image (using the combine task)

The first part of the code specifies the basic structure of the workflow, which is mirrored
in the diagram shown above the code. This uses several common functional programming
idioms such as map, to apply a function (lambda abstraction) to a list of items, and cons,
to combine two values into a single data structure. The cons pairs are pulled apart during
sorting, when it is necessary to compare the hue values of the images, and prior to the
combine function, where it is necessary to extract just the thumbnails from the (then
sorted) list. The syntax used here is a slightly modified version of that described above, in
which ! is used in place of the λ symbol (for use in ASCII text), and function definitions
f = λx1 . . . λxn.e can also be written as f x1 . . . xn = e.

Below the main workflow definition is the implementation of each task. The service in-
voked by this workflow uses a simple command invocation protocol in which a request
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list get

resize

analyze

qsort combinecons tail

map map

/* Workflow */
main = (letrec

analyzed = (map (!name.
(letrec img = (get name)
in (cons (analyze img)

(resize 75 75 img))))
list)

sorted = (qsort huecmp analyzed)
thumbnails = (map tail sorted)

in (combine thumbnails))

/* Service operations */
list = (split
(connect "localhost" 5000 "list\n"))

get name = (connect "localhost" 5000
(++ "get " (++ name "\n")))

analyze img = (map ston (split
(connect "localhost" 5000
(++ "analyze\n" (++ (ntos (len img))
(++ "\n" img))))))

resize width height img =
(connect "localhost" 5000
(++ "resize " (++ (ntos width)
(++ " " (++ (ntos height)
(++ "\n" (++ (ntos (len img))
(++ "\n" img))))))))

combine imgs =
(connect "localhost" 5000
(++ "combine " (++ (ntos (len imgs))
(++ "\n" (foldr ++ nil

(map (!img.++ (ntos (len img))
(++ "\n" img))

imgs))))))

/* Sorting comparators */
huecmp x y =
(- (hue (head x)) (hue (head y)))

/* Data structure accessors */
hue x = (item 0 x)
saturation x = (item 1 x)
value x = (item 2 x)

/* Response parsing (list/analyze) */
split s = (split1 s "")

split1 s got =
(if s

(if (isspace (head s))
(cons got

(split1 (tail s) ""))
(split1 (tail s)

(++ got (cons (head s)
nil))))

nil)

Figure 6: Image processing workflow
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consists of a space-separated sequence of tokens, specifying the operation name and ar-
guments in the same manner as the UNIX command line. Some operations accept addi-
tional binary image data, which is encoded as a length string followed by the data itself.
The get, resize, and combine operations return binary image data, and the list and
analyze functions return a space-separated sequence of tokens, corresponding to the list
of images and analysed image properties, respectively. Each of the task implementation
functions composes the request and parses the responses as appropriate.

The remaining parts of the code contain helper functions used by the workflow. huecmp
is a comparator function used when sorting, to determine the relative ordering of images.
The hue, saturation, and value functions access the corresponding fields of the data
structure returned by analyze (represented as a cons list). The split function is used
to parse the space-separated token strings returned by list and analyze into cons lists.
Other standard helper routines such as map, foldr, and qsort are not shown here for
space reasons. However, they are defined in using the same notation used for the workflow
itself. ntos and ston are built-in functions which convert between numbers and strings.

6 Implementation

Our discussion so far has addressed only the definition of workflows. In order to execute
workflows in an appropriate manner, it is necessary for the language implementation to
meet certain requirements. In designing such an implementation, it is useful to consider
the approaches that have been used for executing existing functional languages, which
also use the lambda calculus as their underlying programming model. In particular,
parallel implementations of functional languages are relevant to workflows, since there
are often performance benefits to be gained from having multiple external tasks running
in parallel.

In this section, we discuss properties we consider useful for implementing the model
described in this paper, based on experience gained from building our own prototype. Our
approach is not necessarily the only way of implementing the model, however we believe
the features listed here are important for appropriately treating workflows as functional
programs. The specifics of our prototype implementation are outside the scope of this
paper, but are discussed in [20].

6.1 Execution efficiency

Section 4 introduced the idea that support features required by workflows, such as the
ability to invoke remote tasks, could be implemented directly in the workflow language,
rather than being part of the execution engine. This relies on the presence of built-in
operations for performing numeric and string manipulation operations, as well as the
ability to create and manipulate data structures. These language features can be used
to perform light-weight computation and data transformation on the results and input
values passed between tasks.

A workflow engine designed to support internal computation should aim to achieve rea-
sonable execution speeds, ideally comparable to that of mainstream scripting languages.
Automatic parallelisation introduces overheads, and it is necessary for implementors to
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consider the tradeoffs in performance it involves. However, we have found that it is possi-
ble to keep these overheads low enough to avoid making local computation prohibitively
expensive. Workflows generally delegate compute-intensive work to external tasks, so the
overheads of parallelism are much less of a factor in overall performance.

Many functional language implementations work by compiling source code into an inter-
mediate representation, which consists of a sequence of instructions that can be executed
by an abstract machine. One of the first such examples of this was the G-machine [16],
which provided an abstract instruction set that modeled the operations performed on a
graph during graph reduction. Source code compiled into G-machine bytecode can then
be executed by this abstract machine, which can be implemented either as an interpreter
or a native code compiler. This approach provides significant performance advantages
over direct manipulation of the graph, since it avoids many of the runtime checks and
intermediate transformation steps that would otherwise be necessary. A detailed guide
to implementing functional languages in this manner is given in [17].

6.2 Automatic parallelisation

Parallel task invocation is also important for workflows. Since the tasks are executed by
remote machines, it is often beneficial to have several of them in progress at the same time,
provided all the relevant data dependencies are respected. When an invocation request is
made to a service, the workflow execution should not block, but should instead continue
on with another part of the graph which does not depend on the requested operation.
This is in contrast to traditional RPC toolkits which expose remote service operations as
blocking calls, forcing the client to remain idle while the request is in progress.

A graph representation of a lambda calculus expression contains explicit data dependen-
cies, making it possible for automated analysis to determine which expressions can safely
be evaluated in parallel. In the context of workflows, evaluation of an expression can
cause invocation of a remote task. Since at any point in time there may be multiple
expressions eligible for evaluation, it is possible to exploit parallelism by having several
external tasks running at the same time. This “external parallelism” can be achieved
even when the workflow engine itself is running on a single processor, because the ability
to context switch between evaluation of different parts of the graph enables the use of
multiple machines across the network to exploit parallelism.

Ideally, the cases in which multiple expressions can be evaluated in parallel should be
automatically determined by the language implementation. This relieves the programmer
from having to manually work out which parts of the code should run in parallel, and
maintains the ease of use present in existing workflow languages. As discussed in Section
6.4, existing functional languages usually do not perform automatic parallelisation, due to
efficiency problems with highly compute-intensive code. However, since the workflows we
are concerned with delegate most of their computation to external programs or services,
some cost to local execution performance is acceptable. Automatic parallelisation is thus
practical for workflows, even when they involve some degree of internal computation.
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6.3 Access to network connections

Section 4.1 discussed the representation of network connections as pairs of data streams,
with a connect function providing a mapping from input data to output data. This is
conceptually a “pure” function, assuming that the service being accessed is itself free of
side effects. Implementation of this function, however, involves dealing with state changes
relating to connection establishment, read/write calls, and buffering.

Ideally, the programmer should be able to access the data streams in the same manner
as normal cons lists. Once a data stream has been materialised in memory, it should be
possible to traverse the stream and access portions of it just like any other list. For data
streams that have not yet been fully read, the tail of the list can refer to a suspended
expression which, when accessed, will cause the calling expression to block until that data
becomes available1.

Blocking should be handled in such a way that when an attempt is made to read data
that is not yet available, only the expression(s) that depend on that data are blocked.
Other parts of the graph may still be eligible for execution if they have local computation
to do or are accessing other connections. Effective support for parallelism relies on this,
since workflows will often need to have multiple service invocations in progress at the
same time.

It may be necessary for the language implementation to provide certain internal functions
which do actually utilise side effects, but expose an interface to user code that makes them
appear as pure functions. This is acceptable, as long as the programmer is only given
access to the abstraction of network connections as side effect free transformations from
input to output.

6.4 Comparison with existing functional languages

Since we are proposing the use of a functional programming model for workflows, the
question arises as to whether it would be sufficient to simply use an existing functional
language implementation instead. Ideally this would be the case; however, certain limita-
tions of existing functional languages mean that they do not fully meet the requirements
given above. We argue that it is instead better to study these implementations and
use ideas from them to design new execution engines that cater for the specific needs of
workflows.

The potential for parallel execution is one of the most attractive aspects of functional pro-
gramming, and this area has seen a great deal of attention over the years. The suitability
of these languages for parallel programming follows from the Church-Rosser theorem [4],
which states that the result of evaluation of an expression is independent of the order in
which the reductions are performed2. Many functional language implementations have
exploited this idea, resulting in parallel programming capabilities that are significantly
easier to use than in imperative languages, due to the fact that the programmer does not
have to explicitly control synchronisation between threads.

1This makes use of suspended evaluation, a feature common to many functional programming lan-
guages.

2Assuming that all possible orderings lead to termination

17



Automatic parallelisation has been attempted by several language implementors, but it
is now generally viewed as an impractical goal [19]. This is because for fine-grained
computation, the per-expression overheads of managing and scheduling parallelism can
sometimes decrease overall performance when running on multiple processors. Current
approaches to mitigating these issues involve explicit annotations that must be supplied
by the programmer [25], but this increases the difficulty of writing parallel programs.
However, since workflows delegate most of their computation to coarse-grained external
tasks, the overheads of managing parallelism can be kept much lower. Existing functional
language research has not explored this idea however, since it has focused primarily on
programs that perform only internal computation. Existing workflow engines have already
demonstrated the practicality of automatic parallelisation for the case of coarse grained
tasks.

I/O is another important implementation concern. Workflows require the ability to have
multiple I/O operations executing in parallel, to take advantage of parallel execution of
remote tasks. However, existing functional languages treat I/O as “impure”, since it may
involve side effects. Mechanisms such as streams [23], continuations [14], and monads
[18] all require I/O operations to be executed in a strictly defined order, which precludes
the possibility of invoking multiple remote calls in parallel. A workflow language based
on our proposed model should permit access to network connections from within pure
expressions, and enable concurrent execution of I/O operations on different connections.
The deterministic behaviour of the workflow then relies on the programmer guaranteeing
that all of the services accessed are indeed free of side effects.

7 Conclusion

Lambda calculus is a simple, abstract model of computation. It is independent of the
granularity of operations, and can thus be applied to coarse grained workflows as well as
fine grained computation. The side effect free nature of the model and incorporation of
explicit data dependencies enables techniques such as parallel graph reduction to be used
to coordinate the concurrent invocation of operations. When applied to workflows, this
enables multiple remote operations to be in progress at the same time.

Previous research on functional programming has produced techniques for efficiently ex-
ecuting languages based on the lambda calculus model. These techniques can be used
to build workflow enactment engines in such a way that supports features necessary for
workflows, such as parallelism, but also permits arbitrarily complex, fine grained compu-
tation to be performed within the workflow language itself. This fine grained computation
can be used to implement support functionality such as network protocols for launching
remote tasks, and transforming data between the representations used by different tasks.

The lambda calculus model provides a solid foundation for functional programming and,
by extension, data-oriented workflows. We have shown how common workflow constructs
can be expressed in terms of lambda calculus, both at an abstract level and with regards
to concrete implementation details. This approach to designing workflow engines achieves
power through simplicity, and permits the requirements of concurrency and distribution
to be met without sacrificing expressiveness.
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