
A Simplified Approach to Web Service Development

Peter M. Kelly, Paul D. Coddington, and Andrew L. Wendelborn

School of Computer Science
University of Adelaide

South Australia 5005, Australia
{pmk,paulc,andrew}@cs.adelaide.edu.au

Abstract

Most languages used for developing web services and
clients exhibit properties which make calling remote
functions across a network a non-trivial task. The
type systems used by object oriented languages have
many incompatibilities with those required for ser-
vice interfaces, and the complicated tasks of generat-
ing proxy objects and WSDL service definitions mean
that a lot of effort is required to create a service, in
comparison with defining classes and functions to be
used locally. We discuss the problems with existing
systems and propose a new model for web services de-
velopment based on an implementation of XSLT that
we are currently developing. This provides a number
of features useful for distributed applications such as
automatic fault tolerance and load balancing, as well
as a seamless mechanism for exposing and accessing
web services.

1 Introduction

The concept of service oriented architectures (SOA)
has been around for a long time (White 1976). It
is based around the model of a series of computers
on a network each providing a set of services which
can be accessed by clients. A service consists of a
set of named operations, each of which takes a num-
ber of parameters and returns a result. An opera-
tion is similar to a function defined in a program-
ming language, except that it can be called over a
network. The mechanism used to invoke these oper-
ations is typically referred to as a Remote Procedure
Call (RPC) (Soares 1992). Numerous protocols and
programming interfaces have been proposed over the
years for this model, including SUN RPC, CORBA,
RMI, DCOM, XML-RPC, and, most recently, web
services. While most of the concepts behind web ser-
vices are far from new, it is the standardisation of the
technologies and widespread adoption now being seen
today that makes them significant.

The term web services encapsulates a number
of related standards which can be used together as
a platform for developing distributed applications
through the integration of new and existing systems.
Web Service Description Language (WSDL) (World
Wide Web Consortium (W3C) 2001) provides a stan-
dard way of describing a service, including the oper-
ations it provides, the data types and parameters of
those operations, as well as binding information indi-

Copyright c©2006, Australian Computer Society, Inc. This
paper appeared at Fourth Australasian Workshop on Grid
Computing and e-Research (AusGrid 2006), Hobart, Australia.
Conferences in Research and Practice in Information Technol-
ogy, Vol. 54. Rajkumar Buyya and Tianchi Ma and Rei Safavi-
Naini and Chris Steketee and Willy Susilo, Ed. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

cating which protocols and network addresses can be
used to access the service. XML Schema (World Wide
Web Consortium (W3C) 2004) is used by WSDL to
define the data types that the message parameters
in a service call must conform to. Simple Object
Access Protocol (SOAP) (World Wide Web Consor-
tium (W3C) 2003) is used for encoding messages that
are sent and received by service operations. SOAP is
most commonly used over HTTP, but supports other
protocols as well, allowing applications to choose
other mechanisms for communication that may pro-
vide additional benefits such as performance or secu-
rity. Universal Description, Discovery, and Integra-
tion (UDDI) (Ariba Inc., IBM Corp. & Microsoft
Corp. 2000) is a standard for service directories that
can be queried by clients to find a service matching
a specific criteria. Like many standards designed for
interoperability these days, all of these specifications
are based on XML, in order to provide a well-defined
syntax for encoding and exchanging data between
heterogeneous systems.

The concept of SOA is one type of distributed pro-
gramming model, in which applications are built from
a series of components residing on different comput-
ers. In a SOA, an application is divided into multiple
parts, each of which assumes responsibility for part of
the overall processing. Some parts may provide access
to databases, or implement business logic, while oth-
ers may provide features such as monitoring, logging,
and administration. The way in which an application
is divided up in this manner is similar to shared li-
braries or class libraries used in other programming
systems. This approach allows complex systems to
be divided up into simpler parts which can be de-
veloped by different people or teams, and for some
components to be reused by other applications. This
latter benefit is particularly common in SOA, where
the loose coupling of the model lends itself readily
to services which provide specific functionality that
is not necessarily targeted at any particular applica-
tion or user. These services can then be used by any
application which needs the relevant functionality.

Another benefit that can be gained from using the
SOA programming model is parallelism. With a large
number of machines available, all providing a partic-
ular service, computation-intensive processing can be
performed by splitting the work up and assigning it to
different machines. With the use of asynchronous op-
eration calls, a central “master” node can issue calls
to the service on each machine on the network, each
of which performs some part of the overall compu-
tation. This is one of the reasons why SOA has be-
come popular recently in the area of grid computing
(Foster, Kesselman, Nick & Tuecke 2002). The ability
to develop applications in a distributed manner and
harness the power of large numbers of resources is a
major benefit of the SOA approach.

Despite the benefits of SOA, developing and util-

ising services is a less-than-straightforward task in
many programming environments. Most program-
ming languages in use today were designed before ser-
vices became popular, and thus have numerous lim-
itations which make the development of distributed
applications awkward and complicated. Support for
remote procedure calls is rarely built directly into
the language, and thus it is often necessary to use
alternative mechanisms to invoke service operations.
Other aspects of traditional programming languages
such as type systems and handling of network errors
also make distributed programming difficult, as dis-
cussed further in the next section. Of course, many
distributed applications can and have been built in
these languages; but the process of doing so, in our
view, is not as straightforward as it perhaps could be.

In this paper we describe a different approach
to developing distributed, service-based applications
which solves a lot of the problems associated with
using traditional languages. We are currently in the
process of implementing our ideas in GridXSLT, a
distributed, parallel implementation of XSLT that is
currently under development. It is our view that for
grid computing and SOAs to really succeed, they need
to be made easy and natural to use, by abstracting
away the details of the underlying service definition
and communication mechanisms from developers.

2 Existing approaches to service develop-
ment

2.1 Compiled, object-oriented languages

The majority of web services development today is
done using languages such as Java, C#, and C++.
These are based on the object-oriented paradigm,
where each object has a set of methods, and one or
more fields, or member variables. Function calls oc-
cur by invoking a method on a particular object. In
addition to primitive field types such as integers and
floats, pointers, or references, to other objects are al-
lowed. The in-memory state of a running program
thus consists of a graph of objects with references
to each other. These languages generally need to be
compiled into either machine code or virtual machine
bytecode before being executed, and this compilation
plays a significant role in the way the development
process occurs.

Remote procedure calls in object oriented lan-
guages are typically implemented using proxy, or stub
objects (Birrell & Nelson 1984). These objects imple-
ment a defined interface that is known to the client
and the server, containing methods corresponding to
the operations provided by the service. In order
to make a remote procedure call, the program calls
a method on the proxy object. The way that the
method is implemented is that it encodes the param-
eters into the format required for transmission across
the network, sends the request to the server, and then
blocks. Once the response has been received, it de-
codes the message into the return type of the method
and returns from the call. To the code that made the
call, it appears just like a normal method call.

Despite the fact that remote procedure calls ap-
pear the same as local calls when using proxy ob-
jects, a major drawback is the need to generate the
proxy code in the first place. This can add complex-
ity to the build process, and often requires effort on
the part of the programmer in order to set up. Be-
cause the code must be compiled, it is necessary to
generate the proxy classes prior to compilation of the
code that uses them. In order to generate a proxy
for a web service, it is necessary to use a tool which
takes the WSDL file as input, and produces a series of

source or compiled files, such as classes in Java. Every
time a new service is to be used by a program, these
files must be generated, and if the service definition
changes, the files must be re-generated again. This is
in contrast to class libraries which simply require the
updated library file, such as a JAR archive or DLL
file, to be placed in an appropriate directory.

Another disadvantage for the programming in-
terface for services provided by object-oriented lan-
guages is the mismatch between the type systems
used by the language and that used for web services.
All web services define their input/output parameter
types using XML Schema, which contains a number
of features that are incompatible or at least awkward
to implement in an object oriented language (Meijer,
Schulte & Bierman 2003). These include:

Multiple element occurrences Most languages
do not allow multiple fields of a class to share the
same name, as this could lead to ambiguity when
one of the fields is referenced. XML Schema,
however, allows an element to contain multiple
child elements with the same name, possibly
interleaved with other elements. It is possible
to model adjacent element occurrences as an
array in an object-oriented language, however it
is not possible to directly model cases such as
a field “A” followed by a field “B” followed by
another field “A”. This would generally lead to
ambiguity when the “A” field was referenced as
it would be unclear which one was meant. Some
tools for translating from XML Schema to other
languages will rename the second instance of the
field, but this is a sub-optimal solution.

Anonymous inner types In XML Schema, it is
possible to specify the type of an element in-line,
rather than as a separate named type definition.
This is not widely supported in other languages.
It is possible to work around this when translat-
ing from XML schema by creating named type
definitions with automatically generated names.

Mixed content XML Schema also allows an ele-
ment to contain a mixture of structured content,
in the form of elements and attributes, and arbi-
trary text that can appear between the elements.
In this case, there is no direct correspondence be-
tween the text and a field in a class definition,
and so this information is generally lost when
translating to other languages, or must be rep-
resented in an awkward way, such by having the
class containing an array corresponding to the
actual fields and text nodes present within the
element.

Object-oriented languages also possess a number of
features in their type systems that cannot be trans-
lated into XML, or cannot be meaningfully sent across
a network connection:

Non-serializable objects There are certain types
of objects that cannot be translated meaningfully
into a stream of bytes. These include threads,
socket connections, open file handles, user inter-
face objects, and references to shared memory
segments. The reason they cannot be serialized
is that they do not just represent data, but also
state that is shared with other parts of the sys-
tem. Some RPC systems support these objects
by transmitting a reference, which the server
then uses to send messages back to the client
when it needs to access the object (Tanenbaum
& van Renesse 1988). For example, RMI does
this with objects that implement the Remote in-
terface in Java. However, this mechanism is not

supported by web services; only serializable ob-
jects can be sent as part of a SOAP call.

Pointers A running instance of a program may con-
tain arbitrary graphs of objects connected to-
gether via pointers. When each object only has a
single pointer to it, and is encapsulated as part of
another object, then the graph represents a tree,
and can be transmitted without loss of meaning.
However, if there are multiple pointers to an ob-
ject, then the serialized data sent to a web service
operation must contain multiple copies of that
object. This means that the identity of the ob-
ject is lost, and it appears as two separate objects
when the stream is decoded. Java’s serializa-
tion mechanism handles this by encoding point-
ers, however this is not supported by serialization
mechanisms which produce XML (Hericko, Juric,
Rozman, Beloglavec & Zivkovic 2003), which are
used for web service calls. SOAP does provide a
form of support for pointers by allowing elements
in a message body to act as references to other
elements, but this approach is not supported by
the XML schema type system used in service def-
initions.

Properties Some languages, notably C#, allow an
object to contain properties, which appear to a
caller as member fields, but are actually imple-
mented in code. If a property called amount is
defined on object A, then the code A.amount =
12; will cause the amount property to be set to
that 12. Unlike a normal field though, the value
doesn’t get set directly; instead, a setter method
is called, which can perform any arbitrary pro-
cessing. A similar mechanism is supported for
getter methods. When an XML schema type is
generated for a class containing properties, only
the fields will be stored, and the properties will
be excluded. Thus, when a client-side proxy is
generated from this definition, even if the proxy
is generated in C#, the properties will not be
present.

The most common way to generate a WSDL defini-
tion for a class defined in one of these languages is to
use a tool which parses the source code to locate the
functions and types, which it then generates opera-
tions and XML schema definitions for. Many devel-
opers take this approach to avoid writing WSDL by
hand. However, the incompatibilities described above
can result in errors when generating schema types for
built-in classes, especially if those classes have not
been carefully written to avoid using these features.

For this reason, other developers prefer to first de-
fine their service interfaces in WSDL, and then sub-
sequently implement their service in compliance with
the interface (Shohoud 2002). Some consider this a
superior approach as it emphasises the importance of
the interface over the implementation, and is more
likely to produce types that are clearly defined and
usable by other languages. But hand-coding WSDL
files is a rather tedious process due to the (arguably
unnecessary) complexity of WSDL, in particular the
large amount of code that needs to be written, so this
approach comes at a high price. The same issue also
applies to dynamically typed scripting languages, de-
scribed in the next section.

2.2 Scripting languages

Another popular approach to web service develop-
ment is to use a scripting language. These are in-
terpreted languages which do not require a separate
compilation step in order to execute them. They are

generally designed for lightweight programming tasks,
as they often exhibit lower performance compared to
compiled languages. This tradeoff is acceptable in
many situations, however, as the ease of program-
ming and quicker development cycle can make work-
ing with these languages easier. Examples of scripting
languages such as these include Perl, Python, PHP,
and Javascript.

One of the things that makes scripting languages
so appealing for writing server-side code is the ease
with which it can be made available to clients. De-
veloping a service in most Java environments is a
relatively complicated process, involving the editing
of several different configuration files, generation of
proxy classes, compilation of source files, packaging
into archives, and using administration tools to de-
ploy the archive to an application server. Using Perl
or PHP to write a dynamic web page, on the other
hand, involves simply copying the file onto a web
server. In fact, most development of dynamic web
sites using these languages is done by editing the files
in-place on a test server, and as soon as the file is
saved in an editor it can be accessed from a web
browser without any extra steps. This is also a desir-
able approach for developing web services.

Using a scripting language to write a web service
client tends to be much simpler than a compiled lan-
guage. Because there is no compilation step neces-
sary, and the languages do not perform static type
checking on a program, it is possible to write code
that creates a proxy object and calls methods on it,
without the implementation of that proxy object be-
ing created until runtime. When the program ex-
ecutes, the SOAP implementation of the language
can take a service definition and dynamically create a
proxy object with the required methods based on the
operations found in that definition. In many imple-
mentations, the WSDL definition of the service can
easily be obtained at runtime and used for construc-
tion of the proxy object.

The dynamic typing of such languages can, how-
ever, be a drawback. For large programs, it is desir-
able to know at the start of execution whether or not
there are errors in the program, rather than wait to
find out about them when the relevant code comes
to execute. Compiled languages like those described
previously will catch errors like calls to non-existent
methods and passing of incorrect types as parameters;
these things will only occur at runtime in a scripting
language. This issue, however, is one that is common
to the choice of programming language regardless of
whether the task is web services development or some
other type of program, and scripting languages have
nonetheless seen widespread popularity.

Another disadvantage that comes from the lack of
static typing in scripting languages is the problems
involved with automated generation of WSDL files.
These languages do not permit user-defined functions
to specify their parameter types or result type, but
this information is required by WSDL. If a client
written in Java wants to access a service written in
Python, then the client needs to know the types it
should be sending. For WSDL definitions to be writ-
ten for services implemented in a scripting language,
it is therefore necessary to manually create the defi-
nitions.

2.3 Web service composition languages

Another class of languages, often referred to as web
service composition languages, are also used for build-
ing services. The most prominent of these is Busi-
ness Process Execution Language (BPEL) (Andrews,
Curbera, Dholakia, Goland, Klein, Leymann, Liu,
Roller, Smith, Thatte, Trickovic & Weerawarana

2003), which is targeted specifically at writing ser-
vices that form part of an overall pattern of interac-
tion with other services. It provides constructs for in-
voking operations on remote services and storing the
results in variables that can be then passed to other
operations. BPEL programs are themselves exposed
as web services and are invoked upon requests from
clients.

A major drawback of BPEL is that while it does
contain some limited control constructs, the expres-
siveness of the language is fairly restricted compared
to many other languages. For example, conditional
and loop statements are supported, but there is no
way to create user-defined functions or complex data
structures. It is thus difficult to write application
logic in BPEL; it must instead be implemented in ser-
vices provided by other languages, and simply called
from the BPEL program. Additionally, the verbose,
XML-based syntax of BPEL requires several times
the amount of code to be written for a given task
compared to most other languages.

Other service composition languages such as
SCUFL (Oinn, Addis, Ferris, Marvin, Greenwood,
Goble, Wipat, Li & Carver 2004) are based on the
workflow model, where the programmer creates a di-
rected graph in which the nodes correspond to op-
erations and the edges indicate the flow of data be-
tween the nodes. While this model readily lends it-
self to parallelism, writing programs directly for this
model is often a difficult process due to the fact that
it is fairly low-level, and a very different programming
model to what most programmers are used to.

Similar work to what we propose in Section 4
has been done on extending XQuery to support
web service development and consumption (Onose &
Simeon 2004). This comes close to achieving many
of the goals we are aiming for; however, XQuery is
a less powerful language than XSLT (Kay 2005) and
the XQuery implementation developed in this work
lacks the parallelism and distributed execution fea-
tures that we are investigating as part of our research,
although these are outside the scope of this paper.
Another XML-based language, XL (Florescu, Grn-
hagen & Kossmann 2003), also shares many of our
goals, however our approach is to innovate at the im-
plementation level rather than proposing a new lan-
guage.

2.4 Summary

The object-oriented and scripting languages de-
scribed above, which represent the most common
approaches to distributed services programming to-
day, were originally designed for stand-alone environ-
ments. Network support and distributed processing
were subsequently added as extras, rather being part
of the core language. While they are useful for de-
veloping a wide range of sequential, non-distributed
applications, the act of connecting together different
services in these languages is not a straightforward,
natural process. Each language has gone part way
to supporting the streamlining of the process, such
as the dynamic proxy generation present in script-
ing languages, or the automated generation of ser-
vice interface definitions from statically typed, object-
oriented languages, but still, additional effort is re-
quired to create a service beyond merely writing the
relevant functions to be exposed.

More recently, a number of languages specifically
targeted at web service composition have been pro-
posed, which address some of these issues, but in
general lack many useful features and provide a com-
paratively restricted programming model. As such,
they are mainly appropriate only for simple compo-
sitions of services written in other languages which

provide more complex functionality. The work done
on XQuery and XL provides a richer programming
model for working with services; our work is most
closely related to these projects.

In this paper, we propose an implementation of
the XSLT language. Our implementation leverages
an already existing, powerful language, and extends
it with functionality that makes it appropriate for web
service development and composition. While the se-
mantics of the language make certain compromises
on features compared to some mainstream languages,
it is still possible to implement complex application
logic in the language in addition to gaining features
that make web service development easier and more
seamless than in other languages.

3 Desired language features for web service
development

Based on our analysis of existing systems for develop-
ing web services and clients, we have identified a set
of requirements which we feel are necessary to meet
our goals of providing an easy to use development
environment. It is our opinion that a system based
on these features will make the process of building
clients and services easier and more natural. These
requirements are:

• The language should support static typing, so
that WSDL definitions can be automatically and
seamlessly generated from function definitions in
the source code. The type system used should fit
within the web services model, in order to avoid
the problems described in Section 2.1. A pro-
grammer should never have to run into a situa-
tion where they define a data type, use it exten-
sively throughout their code, and discover later
when they try to expose a web service operation
using the type, that it uses some feature that is
not supported by the serialization mechanisms
and has to be changed, along with all the code
that uses it.

• All data should be serializable to XML so that it
can be sent as part of a SOAP call. This means
no support for pointers or objects representing
system state. The programmer should never
have to worry about whether or not a data struc-
ture they have created is going to cause problems
when they want to send it to another node on the
network. This is true network transparency - the
network is there, but you can’t see it. Working
with local data is the same as working with re-
mote data.

• A rapid development cycle should be supported,
being as easy to use as Perl and PHP scripts
are for building dynamic web sites. A developer
should be able to save their source code in an ed-
itor, and have the service immediately accessible
to clients.

• The WSDL definition of a service should be auto-
matically and seamlessly generated from the code
of the service itself without any intervention from
the programmer. It should not be necessary to
manually create WSDL files, or even to explicitly
run generation tools. A service developer should
not even have to know what WSDL is.

• There should be no difference between local and
remote function calls, either in terms of writing
functions or calling them. Whenever a function
is added to a program, it should be implicitly
and automatically callable as a web service op-
eration. Any web service should be accessible by

importing it into the program by specifying its
URL, after which all of the operations can be
called as if they were locally-defined functions.
There should be no need for proxy classes or se-
rialization code to be generated at compile time.

• To facilitate error recovery and load balancing,
all functions should be side-effect free. A service
may not maintain state; whenever an operation
is called, it performs some computation based
on its parameters, and returns a result. There
should be no impact on any external entity as a
result of calling an operation. This can be used
to allow for retries in the event of network errors,
or for service operation calls to be load balanced
across a set of machines providing identical ser-
vices.

These requirements place certain restrictions on the
types of applications that can be written, particularly
the lack of support for pointers, and the assumption
that all functions are side-effect free. It is impor-
tant to recognise that this model is not appropriate
for all types of applications, as in some cases these
features are necessary. While these restrictions may
seem problematic for certain applications, we have
taken the view that in order to gain some of the ben-
efits, such as automatic error recovery, load balanc-
ing, and network transparency, it is appropriate to
make these trade-offs. For applications which can be
developed within these restrictions, we believe our ap-
proach offers a significantly more intuitive model of
distributed programming.

It is likely that in many situations developers may
find it useful to integrate programs developed within
this model with those written in the other languages
described above; this can be easily done as all of the
integration can be achieved using the web services
standards. This situation is similar to that of other
specialised languages, for example SQL, which is well
suited to database queries, but almost always needs
to be used in conjunction with another language in
order to form a complete application. This model is
thus appropriate for web service composition (Khalaf,
Mukhi & Weerawarana 2003), which involves compos-
ing a set of web services implemented in other lan-
guages to produce a high-level program.

Our approach of using a restricted, functional
programming model is similar to that used for dis-
tributed query processing (Kossmann 2000). Clus-
tered and distributed database systems partition their
data across multiple sites, and execute queries by per-
forming some portion of the processing on each ma-
chine, usually close to the data being accessed. To the
client, this distribution is completely hidden, and the
request is submitted in SQL or some other high-level
query language. A database programmer never has to
concern themselves with how to structure their code
for concurrent execution, or deal with threads and
message passing. Sophisticated compilation and opti-
misation techniques are used within the database en-
gine itself to execute the query in parallel. Database
query languages are relatively restricted in their pro-
gramming model, but still very widely used as part of
other applications. The large body of existing work in
this area demonstrates the viability of using a high-
level approach to distributed programming.

We see our work as augmenting existing technolo-
gies for developing web services, rather than being a
replacement for existing approaches. A major benefit
of SOA is the ability to connect together heteroge-
neous systems and enable interaction between them
in a platform and language independent manner. It
is likely that in the majority of usage scenarios for
our system, our language implementation will be used

to compose together functionality provided by exist-
ing services written in other languages. Our work is
targeted at providing both facilities for web services
composition, and for implementing application logic.
The degree to which the language is used for each of
these tasks is up to the programmer; we provide sup-
port for both types of development so that the choice
is available.

4 Overview of GridXSLT

GridXSLT is an implementation of the XSLT pro-
gramming language (World Wide Web Consortium
(W3C) 2005) that we are currently developing, which
is designed to meet the requirements listed above.
XSLT, or Extensible Stylesheet Language Transfor-
mations, is a pure functional language designed for
dealing with XML data. It is commonly used for
transforming data from one format to another, typ-
ically for presentation formatting or integration of
different business systems. Existing implementations
of XSLT are designed for processing relatively small
amounts of data, and do not contain support for web
services. Our implementation is aimed at large-scale,
distributed data processing of the sort becoming com-
mon in the area of grid computing.

XSLT possesses a number of features which make
it suitable for achieving our goals. All variables and
parameters consist of simple or complex types that
can be represented in XML. There is no support for
pointers, and it is not an object oriented language,
although it is still possible to define arbitrarily com-
plex data structures. A complex data structure is
one that consists of multiple member fields, which
are either simple types such as integers or strings, or
other complex data structures. While in many lan-
guages these are supported using pointers, in XSLT
the data structure model is restricted to containment
only. This is similar to using nested structs in C and
avoiding the use of pointers. Most types of data struc-
tures, including trees and lists, are supported by this
model. All data types are defined using XML schema,
which is the same type system used by WSDL - this
means that any custom data type declared in the pro-
gram can be included directly as part of the service
interface without any incompatibilities.

Our implementation supports automatic paralleli-
sation of XSLT code. As a functional language, all
functions are side-effect free, meaning that there is
no concept of state in a running program which can
change due to a function call. This means that the
order in which a set of functions are called within
the code does not effect the result of the program.
In an expression containing calls to several different
functions, each of these can be executed concurrently,
potentially across multiple machines. Additionally,
variables are single-assignment only, so once a vari-
able has been given a value it is guaranteed to re-
tain that value for the remainder of its lifetime. This
is another important feature required for automatic
parallelisation. The way in which this parallelism and
distributed execution operates is not discussed in this
paper; the reader is referred to (Kelly, Coddington &
Wendelborn 2005) for a more detailed overview.

The GridXSLT execution engine runs programs
using an interpreter, so there is no need for programs
to be compiled before they are run. Unlike the inter-
preted scripting languages described earlier, however,
the language supports static typing. Before program
execution begins, the source code is translated by the
interpreter into an intermediate form, and part of this
process is to type check all variable assignments and
procedure calls. This checking is based on the func-
tion signatures for locally defined functions, and the

WSDL definitions of all services that the program
uses. Because the service definitions contain all of
the type information for parameters and results, it is
possible to ensure that the calls are using variables
of the correct type. The names of all functions refer-
enced in the code are also checked to ensure that they
correspond to either a locally available function, or a
web service operation declared in a WSDL file.

The implementation of calls to web services hap-
pens directly within the interpreter, instead of using
proxy objects. Functions in XSLT are grouped into
namespaces, in a similar manner to which classes are
grouped into packages in Java. When a program uses
a service, it associates a namespace with that ser-
vice, specifying the location of the WSDL definition.
When a function call occurs during program execu-
tion, the interpreter inspects the namespace of the
function, and if it has been mapped to a service def-
inition, then the call will be redirected to the service
instead of a local function. This is described further
in the next section

4.1 Access to other web services

XSLT does not provide direct support for web ser-
vices as part of the language specification. However,
it does allow for implementors to provide extension
functions, which are additional functions that are out-
side of the specifications. An extension function is
specific to a particular implementation, so code that
uses these is not portable to other implementations
of the language, unless they also provide the same
extension.

Namespaces are used to group functions together,
and when an extension function is provided, it has a
particular namespace associated with it. To call the
function, it is necessary to associate a prefix with the
namespace using the standard mechanisms provided
by XML. When the function is called, this prefix is
placed at the start of the function name. For exam-
ple, to call the function getPrice() in the namespace
urn:store, the following code could be used:

<xsl:value-of
xmlns:st=’’urn:store’’
select=’’st:getPrice(’shoes’)’’/>

In our implementation we use this mechanism to
make web service operations accessible as extension
functions. When a namespace prefix is declared with
a URL that begins with wsdl:, we treat this as a
namespace containing functions corresponding to the
operations provided by the service. In order to call
a function on a web service, all that is necessary is
to associate a namespace prefix with a URL contain-
ing the WSDL definition of that service, and then all
function calls in that namespace will result in requests
that are sent to the service. For example:

<xsl:value-of
xmlns:st=’’wsdl:http://store.com/api?WSDL’’
select=’’st:getPrice(’shoes’)’’/>

Normally the namespace prefix would be declared
once at the top of the program, rather than individual
statements as in the examples here. Apart from this
declaration, use of a service appears exactly like local
function calls. There is no need for any extra steps
such as generation of proxy classes, as the method
calls and serialization are all handled internally within
the execution engine.

Because of the support for static type checking,
and the ability to check that all references to web
service operations are correct, runtime errors relating

to invalid use of service operations that can occur
in other scripting languages are not possible in our
implementation. Any such errors are reported before
program execution begins.

4.2 Exposing programs as web services

A web service provides a set of operations which are
accessible to clients; each operation corresponds to a
function that is implemented by the service. When
an XSLT program containing user-defined functions
is exposed as a web service, the service contains one
operation for each function. The parameters and re-
turn value of each function correspond to the input
and output messages of the operation.

The GridXSLT execution engine acts as a web
server and exposes all programs within its document
root as services. No special action is required on the
part of the developer to expose their program as a ser-
vice other than placing the source file in an appropri-
ate directory on the server. When the engine receives
a request for the file, it executes the operation spec-
ified by the client. All decoding of parameters and
encoding of the result value is handled by the engine
itself, and there is no need for serialisation code to be
generated separately for each complex type used by
the service.

A WSDL definition of a service is automatically
generated by the engine when the client submits a
request for the filename with “?WSDL” appended to
the end of the URL. All information about the op-
erations and parameter types can be determined by
analysing the source file, and this is combined with
information about the address of the server to gen-
erate the binding information which tells the client
how to access the service. Because the type system
used by XSLT is identical to that of WSDL, there is
no chance of user-defined types not being expressible
in the service definition. While most other languages
require the programmer to be careful when defining
data types, in order to ensure that features of the type
system not supported by web services are avoided, all
schema types defined in an XSLT program are guar-
anteed to be serializable, and thus usable as part of a
service interface.

A WSDL file consists of five different sections:
types, messages, port types, bindings, and services.
The types section contains XML schema definitions
for all complex types used by operation parameters
or results. A namespace must be declared for the
schema, and each type is given a name, which is ref-
erenced from other parts of the document. The mes-
sages section contains a separate input and output
message for each operation provided by the service.
A message consists of one or more named parts, each
of which references a built-in XML schema type, or
one of the complex types defined in the WSDL file.

The service definition also contains one or more
port types. These are basically the same as interfaces,
and contain a set of operations. Each operation in
the port type corresponds to a function implemented
by the program, and has an input and output mes-
sage. The messages defined previously are referenced
by name within each of the operations. Despite the
fact that the message parts are declared in order pre-
viously, it is necessary to declare the parameter order
again in each operation element.

Next comes the bindings section. This declares the
messaging protocol to be used for each port type. Ev-
ery single operation must be repeated here, this time
giving specific information about how that operation
should be called. The information required here de-
pends on the messaging protocol being used; for the
common case where the SOAP protocol is used, the
type of encoding for the message body is specified.

The last section is the services section, which lists
the port types that are provided by the service and as-
sociates the previously declared bindings with them.
It is this element which determines the actual overall
set of operations that are provided. It is possible to
have multiple port types, and multiple bindings for
each port type, although in the common case there is
only one of each.

This is a considerably more complex method of
defining service interfaces than that provided by most
other RPC systems. The example given in Section 5
requires no less than 52 lines of code to represent a
service with a single operation, for which the type def-
initions and function signature (i.e. without the im-
plementation) requires 2 lines of XSLT. Since WSDL
is an rather verbose language, it is beneficial to pro-
vide a mechanism to express interface definitions in
a more concise syntax, which is what we have done
in our implementation, as demonstrated in the exam-
ple. As mentioned in Section 2, some web service de-
velopment environments provide the ability to auto-
matically generate WSDL definitions from the source
code, however the issue of type system compatibil-
ity can often cause problems. With XSLT there is
a 1:1 mapping between the types expressible in the
language and those exposed via WSDL, as both lan-
guages use XML Schema.

4.3 Fault tolerance and load balancing

In distributed programming systems, fault tolerance
is an important issue. When a client makes a call
to a remote service, it is possible that a network er-
ror may cause the request to fail. This error can be
due to a variety of reasons, including the remote host
crashing, the network being disconnected, or a high
load on either the network or one of the machines
causing the request to time out. When developing
a distributed application it is necessary to deal with
these situations in some way.

The simplest way to handle an error is to simply
stop execution of the program. In the case where the
client itself is actually a web service that has been
called from yet another host, this equates to returning
from the call with an error, rather than the expected
result value. If the client is an application invoked
directly by a user, then the program simply exits with
an error message.

In most cases, however, it is desirable to try to
recover from the error. The most obvious way is to
retry the call until it completes, and then continue
execution. This is done if the error was a transient
one, such as a timeout, which stands a chance of suc-
ceeding on a second attempt. However, if the error
is permanent, such as a response indicating that the
service does not exist, or the parameter types are in-
correct, then future retries will likely fail, so execution
is instead aborted.

Another error handling approach supported by the
engine is to retry the call on a different host. This is
possible when the WSDL definition of the service in-
cludes multiple bindings, each referencing a separate
host. It is possible for the provider of a service to
set up a number of machines which all provide identi-
cal implementations of the same service, and include
each of these as alternative bindings in the service def-
inition. If these are available, then subsequent retry
requests are sent to machines for which communica-
tion errors have not occurred, in preference to those
which have.

This approach of multiple bindings is also used for
load balancing. If a service is to be accessed multiple
times, then every time a request is made, a different
host will be used. When a number of different re-
quests are made by concurrently executing portions

of the client program, this enables distributed paral-
lelism, potentially resulting in a shorter overall execu-
tion time for the program. It also ensures that where
multiple machines are available, they each get a fair
share of the load, rather than one machine having to
handle all the requests.

The fault tolerance mechanisms supported by
GridXSLT rely on the assumption that the web ser-
vices being used are side-effect free, in line with the
semantics of the XSLT language. It is possible for a
situation to arise where a request is received by the
server, and the operation is performed, but a subse-
quent network error causes the response to be lost.
The client will interpret this as an error and retry the
call. If the service maintains state, then this could
cause undesirable results, such as a credit card be-
ing charged twice. State is also a problem for load
balancing, because if each service maintains its own
state, then each request could see a different service
state depending on where it is sent.

Our initial implementation is restricted to web ser-
vices which are stateless, which means that the only
effect that calling an operation has is to return a re-
sult value, since there is no state to be modified, and
multiple calls to an operation will return the same
result each time. Obviously, not all web services op-
erate on this model, and these are not supported. As
discussed in Section 3, this restricts the scope of ap-
plications that can be developed within our model.
However, we feel that for a restricted class of applica-
tions, i.e. those which do not rely on state, the ability
to transparently perform error recovery and load bal-
ancing in this manner is an attractive feature. One
area we may explore in the future is how stateful ser-
vices can be supported within this model.

The fault tolerance and load balancing features of
our system are only in the early development stage,
so no results yet are available. The ideas we have pre-
sented here will be further developed and described
in more detail in future publications.

4.4 Condensed language syntax

An important feature we are implementing in our en-
gine is support for an alternative language syntax for
XSLT. The default syntax defined by the language
specification is rather verbose, as everything is rep-
resented by XML elements. Like other XML-based
languages, considerably more code is required to ex-
press the same things that can be expressed much
more concisely and succinctly in other languages. For
example, the code to call a template with a series of
parameters looks like this:

<xsl:call-template name=’’foo’’>
<xsl:with-param name=’’a’’ select=’’12’’/>
<xsl:with-param name=’’b’’ select=’’3’’/>

</xsl:call-template>

We are developing an alternative syntax, XSLiTe,
which contains all of the same statements as XSLT
but allows them to be expressed in a manner which is
much more straightforward to work with. Program-
mers familiar with languages such as C, Python, and
Java will likely find this a more natural fit. An ex-
ample of the above template call represented in this
syntax is as follows:

foo(a=12,b=3);

We will not go into further details here, as a
more detailed example is given in (Kelly et al. 2005).
Our execution engine is capable of handling programs
written in either this condensed syntax, or the stan-
dard XML-based syntax of XSLT, and can translate

between the two language syntaxes. The only differ-
ence between the two is the syntax, not the semantics
- the available language constructs are the same in
both, and the same program written in either syntax
will produce the same results.

5 Example

In order to demonstrate the use of GridXSLT for de-
veloping a web service, we give a simple example of
a matrix multiplication service. A single operation,
mmul(), is provided, which takes two 3x3 matrices
as parameters and returns the result of multiplying
them together. Each matrix is represented as an XML
structure containing a series of <row> elements, each
of which contains <col> elements with the values of
the numbers in each cell.

The code for this service is shown in Figure 1. The
first line defines a data structure called matrix which
is used as the type for both parameters of the func-
tion as well as the return value. This type defini-
tion uses the condensed XSLiTe syntax to represent
an XML schema definition. The mmul() function is
then defined next, specifying two parameters, a and
b. The code to multiply the matrix consists of two
nested loops, within which the value for each cell in
the result matrix is computed based on the contents
of the two supplied matrices. The %row and %col ex-
pressions specify element creation; the result of the
sum() function in the innermost loop is placed within
a <col> element each time it is called, and a ¡row¿
element is created for each iteration of the outer loop
containing the column elements for that row.

To expose this program as a web service, it is sim-
ply necessary to place the file within a directory un-
der the document root of a running GridXSLT en-
gine. A client may then submit requests to the server
for the mmul() function, or obtain the service defi-
nition by appending “?WSDL” to the URL. In the
latter case, the WSDL definition is dynamically cre-
ated and returned to the client, as shown in Figure
2. This contains the XML schema type declaration
for the matrix type, generated from the source code
of the service. It also includes an operation for the
mmul() function, as well as input and output mes-
sages for the operation with the appropriate type as-
sociations. The binding and service elements are also
generated for the service, based on the address of the
web server.

Two things are worth noting about the generated
WSDL file. Firstly, the type definition is taken ver-
batim from the source, with no mapping between dif-
ferent type systems. Although the source code uses
the more condensed syntax, it is expressing the same
thing as the complex type defined in the types sec-
tion. Secondly, the difference in the amount of code
required to express the type and operations of the web
service is more than an order of magnitude greater
than in the XSLiTe syntax in which the program is
written. While this could be automatically generated
for a statically typed language, it would have to be
written by hand for a dynamically typed scripting lan-
guages, cancelling out the rapid development benefits
for which those languages are often chosen.

6 Conclusion

In this paper we have presented an analysis of existing
web service development environments and pointed
out the fundamental limitations in the popular lan-
guages used today which make distributed program-
ming a difficult task. We have made the case for an
alternative programming model that is more suited

to distributed systems, based on the goal of obtain-
ing network transparency, by hiding low-level details
from the programmer. In particular, the capabilities
of fault tolerance and load balancing that we have de-
scribed ease the task of dealing with multiple hosts in
a grid environment, particularly when large scale ap-
plications are involved that require good performance
and reliability.

We have discussed the ways in which our XSLT
implementation provides solutions to these problems,
by providing seamless mechanisms to consume and
expose web services. As we are currently in the pro-
cess of implementing this design, we have not yet been
able to perform a full evaluation of this approach,
but we feel that it is likely to result in a superior
development experience for the programmer, due to
the hiding of low-level details and making distributed
programming a natural part of the language.

We see this as part of a continuation of the evolu-
tion of programming languages that has been going on
for several decades. Initially when some functionality
is made available, programmers are expected to deal
with it explicitly, and then higher level tools, APIs,
and languages appear which abstract the details away.
It used to be that applications were required to man-
age their disk storage on a block-by-block basis, and
then file systems were invented so that the operat-
ing system could take care of it. In the early days
of the PC platform, programmers had to interface di-
rectly with hardware such as sound cards and graph-
ics cards, and then device drivers and operating sys-
tem APIs came along which hid the details and pro-
vided a common interface. A similar evolution has
occurred with the advent of Java, and programmers
can now write platform-independent programs with-
out having to worry about low-level operating system
details.

Our work is an application of these ideas to the
problem of developing distributed applications using
web services. In particular, we are concerned with
hiding the details of how services are exposed and
accessed, how parallel programs are divided up and
distributed across a grid of machines, and how data
can be represented in a way that can be seamlessly en-
coded and safely transmitted across a network. Work-
ing in a higher level programming environment like
the one we have proposed here will bring the benefits
of abstraction to the field of distributed web service
programming.

Further information about this project is available
at http://gridxslt.sourceforge.net/.

References

Andrews, T., Curbera, F., Dholakia, H., Goland,
Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I. & Weer-
awarana, S. (2003), ‘Business Process Execu-
tion Language for Web Services version 1.1’,
http://ifr.sap.com/bpel4ws/.

Ariba Inc., IBM Corp. & Microsoft Corp. (2000),
‘Universal description, discovery and in-
tegration (UDDI) technical white paper’.
http://www.uddi.org/.

Birrell, A. D. & Nelson, B. J. (1984), ‘Implementing
remote procedure calls’, ACM Transactions on
Computer Systems (TOCS) 2(1), 39–59.

Florescu, D., Grnhagen, A. & Kossmann, D. (2003),
‘XL: An XML programming language for web
service specification and composition’, Computer
Networks Journal (Special Issue on Semantic
Web) 42(5).

type matrix { { int col[3]; } row[3]; };

matrix mmul(matrix $a, matrix $b) {
for-each $i in (1 to 3) %row
for-each $k in (1 to 3) %col
sum(for $j in (1 to 3) return $a/row[$i]/col[$j] * $b/row[$j]/*[$k]);

}

Figure 1: Implementation of the matrix multiplication service

<?xml version="1.0"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="urn:matrix"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="urn:matrix">

<types>
<schema xmlns="http://www.w3.org/2001/XMLSchema" targetNamespace="urn:matrix">
<complexType name="matrix">

<sequence>
<element name="row" minOccurs="3" maxOccurs="3">
<complexType>

<sequence>
<element name="col" minOccurs="3" maxOccurs="3" type="xsd:int"/>

</sequence>
</complexType>

</element>
</sequence>

</complexType>
</schema>

</types>
<message name="mmulResponse">
<part name="mmulReturn" type="tns:matrix"/>

</message>
<message name="mmulRequest">
<part name="a" type="tns:matrix"/>
<part name="b" type="tns:matrix"/>

</message>
<portType name="MatrixPortType">
<operation name="mmul" parameterOrder="a b">
<input message="tns:mmulRequest" name="mmulRequest"/>
<output message="tns:mmulResponse" name="mmulResponse"/>

</operation>
</portType>
<binding name="MatrixBinding" type="tns:MatrixPortType">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="mmul">
<soap:operation soapAction=""/>
<input name="mmulRequest">

<soap:body use="literal"/>
</input>
<output name="mmulResponse">

<soap:body use="literal"/>
</output>

</operation>
</binding>
<service name="MatrixService">
<port binding="tns:MatrixBinding" name="MatrixPort">
<soap:address location="http://localhost:8080/matrix"/>

</port>
</service>

</definitions>

Figure 2: WSDL file for the matrix multiplication service

Foster, I., Kesselman, C., Nick, J. M. & Tuecke, S.
(2002), ‘The physiology of the grid: An open grid
services architecture for distributed systems inte-
gration’, Open Grid Service Infrastructure WG,
Global Grid Forum.

Hericko, M., Juric, M. B., Rozman, I., Beloglavec, S.
& Zivkovic, A. (2003), ‘Object serialization anal-
ysis and comparison in java and .NET’, ACM
SIGPLAN Notices 38(8), 44–54.

Kay, M. (2005), Comparing XSLT and XQuery, in
‘XTech 2005: XML, the Web and beyond’, Am-
sterdam, The Netherlands.

Kelly, P. M., Coddington, P. D. & Wendelborn, A. L.
(2005), Distributed, parallel web service orches-
tration using XSLT, in ‘1st IEEE International
Conference on e-Science and Grid Computing’,
Melbourne, Australia.

Khalaf, R., Mukhi, N. & Weerawarana, S. (2003),
Service-oriented composition in BPEL4WS, in
‘World Wide Web 2003 Conference, Web Ser-
vices Track’, Budapest, Hungary.

Kossmann, D. (2000), ‘The state of the art in dis-
tributed query processing’, ACM Computing
Surveys (CSUR) 32(4), 422–469.

Meijer, E., Schulte, W. & Bierman, G. (2003), Pro-
gramming with circles, triangles and rectangles,
in ‘Proceedings of XML 2003’.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Green-
wood, M., Goble, C., Wipat, A., Li, P. &
Carver, T. (2004), Delivering web service co-
ordination capability to users, in ‘Proceedings
of the 13th international World Wide Web con-
ference on Alternate track papers & posters’,
ACM Press, New York, NY, USA, pp. 438–439.
http://taverna.sf.net.

Onose, N. & Simeon, J. (2004), XQuery at your web
service, in ‘WWW ’04: Proceedings of the 13th
international conference on World Wide Web’,
ACM Press, New York, NY, USA, pp. 603–611.

Shohoud, Y. (2002), ‘Place XML message design
ahead of schema planning to improve web ser-
vice interoperability’, MSDN Magazine 17(12).

Soares, P. G. (1992), On remote procedure call, in
‘CASCON ’92: Proceedings of the 1992 confer-
ence of the Centre for Advanced Studies on Col-
laborative research’, IBM Press, pp. 215–267.

Tanenbaum, A. S. & van Renesse, R. (1988), A cri-
tique of the remote procedure call paradigm, in
R. Speth, ed., ‘Proceedings of the EUTECO 88
Conference’, Elsevier Science Publishers B. V.
(North-Holland), Vienna, Austria, pp. 775–783.

White, J. E. (1976), A high-level framework for
network-based resource sharing, in ‘Proc. Na-
tional Computer Conference’.

World Wide Web Consortium (W3C) (2001), ‘Web
services description language (WSDL) 1.1’.
http://www.w3.org/TR/wsdl.

World Wide Web Consortium (W3C) (2003), ‘Sim-
ple object access protocol (SOAP) version 1.2’.
http://www.w3.org/TR/soap.

World Wide Web Consortium (W3C) (2004),
‘XML Schema part 0: Primer sec-
ond edition’, W3C Recommendation.
http://www.w3.org/TR/xmlschema-0/.

World Wide Web Consortium (W3C)
(2005), ‘XSL transformations (XSLT)
version 2.0’, W3C Working Draft.
http://www.w3.org/TR/xslt20/.

